1
|
De Angelis N, Amaroli A, Lagazzo A, Barberis F, Zarro PR, Cappelli A, Sabbieti MG, Agas D. Multipotent Mesenchymal Cells Homing and Differentiation on Poly(ε-caprolactone) Blended with 20% Tricalcium Phosphate and Polylactic Acid Incorporating 10% Hydroxyapatite 3D-Printed Scaffolds via a Commercial Fused Deposition Modeling 3D Device. BIOLOGY 2023; 12:1474. [PMID: 38132300 PMCID: PMC10740731 DOI: 10.3390/biology12121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
As highlighted by the 'Global Burden of Disease Study 2019' conducted by the World Health Organization, ensuring fair access to medical care through affordable and targeted treatments remains crucial for an ethical global healthcare system. Given the escalating demand for advanced and urgently needed solutions in regenerative bone procedures, the critical role of biopolymers emerges as a paramount necessity, offering a groundbreaking avenue to address pressing medical needs and revolutionize the landscape of bone regeneration therapies. Polymers emerge as excellent solutions due to their versatility, making them reliable materials for 3D printing. The development and widespread adoption of this technology would impact production costs and enhance access to related healthcare services. For instance, in dentistry, the use of commercial polymers blended with β-tricalcium phosphate (TCP) is driven by the need to print a standardized product with osteoconductive features. However, modernization is required to bridge the gap between biomaterial innovation and the ability to print them through commercial printing devices. Here we showed, for the first time, the metabolic behavior and the lineage commitment of bone marrow-derived multipotent mesenchymal cells (MSCs) on the 3D-printed substrates poly(e-caprolactone) combined with 20% tricalcium phosphate (PCL + 20% β-TCP) and L-polylactic acid (PLLA) combined with 10% hydroxyapatite (PLLA + 10% HA). Although there are limitations in printing additive-enriched polymers with a predictable and short half-life, the tested 3D-printed biomaterials were highly efficient in supporting osteoinductivity. Indeed, considering different temporal sequences, both 3D-printed biomaterials resulted as optimal scaffolds for MSCs' commitment toward mature bone cells. Of interest, PLLA + 10% HA substrates hold the confirmation as the finest material for osteoinduction of MSCs.
Collapse
Affiliation(s)
- Nicola De Angelis
- Department of Surgical and Diagnostic Sciences (DISC), Unit of Implant and Prosthodontics, University of Genoa, 16132 Genoa, Italy;
- Department of Dentistry, University Trisakti, Jakarta 10110, Indonesia
| | - Andrea Amaroli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy
| | - Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, 16100 Genoa, Italy; (A.L.); (F.B.)
| | - Fabrizio Barberis
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, 16100 Genoa, Italy; (A.L.); (F.B.)
| | - Pier Raffaele Zarro
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.Z.); (A.C.); (D.A.)
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.Z.); (A.C.); (D.A.)
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.Z.); (A.C.); (D.A.)
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.Z.); (A.C.); (D.A.)
| |
Collapse
|
2
|
Scribante A, Ghizzoni M, Pellegrini M, Pulicari F, Manfredini M, Poli PP, Maiorana C, Spadari F. Full-Digital Customized Meshes in Guided Bone Regeneration Procedures: A Scoping Review. PROSTHESIS 2023; 5:480-495. [DOI: 10.3390/prosthesis5020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Meshes, especially titanium ones, are being widely applied in oral surgery. In guided bone regeneration (GBR) procedures, their use is often paired with membranes, being resorbable or non-resorbable. However, they present some limitations, such as difficulty in the treatment of severe bone defects, alongside frequent mesh exposure. Customized meshes, produced by a full-digital process, have been recently introduced in GBR procedures. Therefore, the focus of the present review is to describe the main findings in recent years of clinical trials regarding patient-specific mesh produced by CAD/CAM and 3D printing workflow, made in titanium or even PEEK, applied to GBR surgeries. The purpose is to analyze their clinical management, advantages, and complications. This scoping review considered randomized clinical trials, observational studies, cohort studies, and case series/case reports studies. Studies that did not meet inclusion criteria were excluded. The preferred reporting items for scoping reviews (PRISMA-ScR) consensus was followed. A total of 15 studies were selected for this review. Based on the studies included, the literature suggests that meshes produced by a digital process are used to restore complex and severe bone defects. Moreover, they give satisfactory aesthetic results and fit the defects, counteracting grid exposure. However, more clinical trials should be conducted to evaluate long-term results, the rate of complications, and new materials for mesh manufacturing.
Collapse
Affiliation(s)
- Andrea Scribante
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Martina Ghizzoni
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Matteo Pellegrini
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Federica Pulicari
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Mattia Manfredini
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Pier Paolo Poli
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Carlo Maiorana
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Francesco Spadari
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| |
Collapse
|
3
|
De Angelis N, Amaroli A, Sabbieti MG, Cappelli A, Lagazzo A, Pasquale C, Barberis F, Agas D. Tackling Inequalities in Oral Health: Bone Augmentation in Dental Surgery through the 3D Printing of Poly(ε-caprolactone) Combined with 20% Tricalcium Phosphate. BIOLOGY 2023; 12:biology12040536. [PMID: 37106737 PMCID: PMC10135550 DOI: 10.3390/biology12040536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
The concept of personalized medicine and overcoming healthcare inequalities have become extremely popular in recent decades. Polymers can support cost reductions, the simplicity of customized printing processes, and possible future wide-scale expansion. Polymers with β-tricalcium phosphate (TCP) are well known for their synergy with oral tissues and their ability to induce osteoconductivity. However, poor information exists concerning their properties after the printing process and whether they can maintain an unaffected biological role. Poly(ε-caprolactone) (PCL) polymer and PCL compounded with TCP 20% composite were printed with a Prusa Mini-LCD-®3D printer. Samples were sterilised by immersion in a 2% peracetic acid solution. Sample analyses were performed using infrared-spectroscopy and statical mechanical tests. Biocompatibility tests, such as cell adhesion on the substrate, evaluations of the metabolic activity of viable cells on substrates, and F-actin labelling, followed by FilaQuant-Software were performed using a MC3T3-E1 pre-osteoblasts line. PCL+β-TCP-20% composite is satisfactory for commercial 3D printing and appears suitable to sustain an ISO14937:200937 sterilization procedure. In addition, the proper actin cytoskeleton rearrangement clearly shows their biocompatibility as well as their ability to favour osteoblast adhesion, which is a pivotal condition for cell proliferation and differentiation.
Collapse
Affiliation(s)
- Nicola De Angelis
- Department of Surgical and Diagnostic Sciences (DISC), University of Genoa, 16132 Genoa, Italy
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, 16100 Genoa, Italy
- Faculty of Dentistry Department of Periodontology, Trisakti University, Jakarta 11440, Indonesia
| | - Andrea Amaroli
- Department of Earth, Environmental and Life Sciences (DISTAV) University of Genoa, 16132 Genoa, Italy
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, 16100 Genoa, Italy
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences (DISC), University of Genoa, 16132 Genoa, Italy
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, 16100 Genoa, Italy
| | - Fabrizio Barberis
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, 16100 Genoa, Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|
4
|
Yang W, Chen D, Wang C, Apicella D, Apicella A, Huang Y, Li L, Zheng L, Ji P, Wang L, Fan Y. The effect of bone defect size on the 3D accuracy of alveolar bone augmentation performed with additively manufactured patient-specific titanium mesh. BMC Oral Health 2022; 22:557. [PMID: 36456929 PMCID: PMC9713982 DOI: 10.1186/s12903-022-02557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Additively manufactured (3D-printed) titanium meshes have been adopted in the dental field as non-resorbable membranes for guided bone regeneration (GBR) surgery. However, according to previous studies, inaccuracies between planned and created bone volume and contour are common, and many reasons have been speculated to affect its accuracy. The size of the alveolar bone defect can significantly increase patient-specific titanium mesh design and surgical difficulty. Therefore, this study aimed to analyze and investigate the effect of bone defect size on the 3D accuracy of alveolar bone augmentation performed with additively manufactured patient-specific titanium meshes. METHODS Twenty 3D-printed patient-specific titanium mesh GBR surgery cases were enrolled, in which 10 cases were minor bone defect/augmentation (the planned bone augmentation surface area is less than or equal to 150 mm2 or one tooth missing or two adjacent front-teeth/premolars missing) and another 10 cases were significant bone defect/augmentation (the planned bone augmentation surface area is greater than 150 mm2 or missing adjacent teeth are more than two (i.e. ≥ three teeth) or missing adjacent molars are ≥ two teeth). 3D digital reconstruction/superposition technology was employed to investigate the bone augmentation accuracy of 3D-printed patient-specific titanium meshes. RESULTS There was no significant difference in the 3D deviation distance of bone augmentation between the minor bone defect/augmentation group and the major one. The contour lines of planned-CAD models in two groups were basically consistent with the contour lines after GBR surgery, and both covered the preoperative contour lines. Moreover, the exposure rate of titanium mesh in the minor bone defect/augmentation group was slightly lower than the major one. CONCLUSION It can be concluded that the size of the bone defect has no significant effect on the 3D accuracy of alveolar bone augmentation performed with the additively manufactured patient-specific titanium mesh.
Collapse
Affiliation(s)
- Wei Yang
- grid.459985.cStomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Oral Higher Education Biomedical Engineering, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147 China
| | - Dan Chen
- grid.64939.310000 0000 9999 1211Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083 China
| | - Chao Wang
- grid.459985.cStomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,grid.64939.310000 0000 9999 1211Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083 China
| | - Davide Apicella
- Marrelly Health, calabrodental hospital, 88900 Crotone, Italy
| | - Antonio Apicella
- Advanced Materials Lab, Department of Architecture and Industrial Design, University of Campania, 81031 Aversa, Italy
| | - Yuanding Huang
- grid.459985.cStomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Oral Higher Education Biomedical Engineering, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147 China
| | - Linzhi Li
- grid.459985.cStomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Oral Higher Education Biomedical Engineering, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147 China
| | - Lingling Zheng
- grid.64939.310000 0000 9999 1211Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083 China
| | - Ping Ji
- grid.459985.cStomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Oral Higher Education Biomedical Engineering, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147 China
| | - Lizhen Wang
- grid.64939.310000 0000 9999 1211Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083 China
| | - Yubo Fan
- grid.64939.310000 0000 9999 1211Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083 China
| |
Collapse
|
5
|
Gallo S, Pascadopoli M, Pellegrini M, Pulicari F, Manfredini M, Zampetti P, Spadari F, Maiorana C, Scribante A. Latest Findings of the Regenerative Materials Application in Periodontal and Peri-Implant Surgery: A Scoping Review. Bioengineering (Basel) 2022; 9:594. [PMID: 36290567 PMCID: PMC9598513 DOI: 10.3390/bioengineering9100594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Regenerative dentistry represents a therapeutic modern approach involving biomaterials and biologics such as mesenchymal stem cells. The role of regenerative dentistry is promising in all branches of dentistry, especially in periodontology and implantology for the treatment of bony defects around teeth and implants, respectively. Due to the number of different materials that can be used for this purpose, the aim of the present review is to evidence the regenerative properties of different materials both in periodontitis and peri-implantitis as well as to compare their efficacy. Clinical trials, case-control studies, cross-sectional studies, and cohort studies have been considered in this review. The outcome assessed is represented by the regenerative properties of bone grafts, barrier membranes, and biological materials in the treatment of intrabony and furcation defects, peri-implantitis sites, alveolar ridge preservation, and implant site development. Based on the studies included, it can be stated that in the last years regenerative materials in periodontal and peri-implant defects treatments have shown excellent results, thus providing valuable support to surgical therapy. To achieve optimal and predictable results, clinicians should always consider factors like occlusal load control, prevention of microbial contamination, and wound dehiscence. Further evidence is required about the use of enamel matrix derivative in alveolar ridge preservation, as well as of stem cells and bone morphogenetic proteins-2 in furcation defects and peri-implantitis sites. Considering the high amount of research being conducted in this field, further evidence is expected to be obtained soon.
Collapse
Affiliation(s)
- Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Matteo Pellegrini
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Federica Pulicari
- Maxillo-Facial and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Mattia Manfredini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paolo Zampetti
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesco Spadari
- Maxillo-Facial and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Carlo Maiorana
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|