1
|
Nacys A, Simkunaitė D, Balciunaite A, Zabielaite A, Upskuviene D, Levinas R, Jasulaitiene V, Kovalevskij V, Simkunaite-Stanyniene B, Tamasauskaite-Tamasiunaite L, Norkus E. Pt-Coated Ni Layer Supported on Ni Foam for Enhanced Electro-Oxidation of Formic Acid. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6427. [PMID: 37834564 PMCID: PMC10573893 DOI: 10.3390/ma16196427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
A Pt-coated Ni layer supported on a Ni foam catalyst (denoted PtNi/Nifoam) was investigated for the electro-oxidation of the formic acid (FAO) in acidic media. The prepared PtNi/Nifoam catalyst was studied as a function of the formic acid (FA) concentration at bare Pt and PtNi/Nifoam catalysts. The catalytic activity of the PtNi/Nifoam catalysts, studied on the basis of the ratio of the direct and indirect current peaks (jd)/(jnd) for the FAO reaction, showed values approximately 10 times higher compared to those on bare Pt, particularly at low FA concentrations, reflecting the superiority of the former catalysts for the electro-oxidation of FA to CO2. Ni foams provide a large surface area for the FAO, while synergistic effects between Pt nanoparticles and Ni-oxy species layer on Ni foams contribute significantly to the enhanced electro-oxidation of FA via the direct pathway, making it almost equal to the indirect pathway, particularly at low FA concentrations.
Collapse
Affiliation(s)
- Antanas Nacys
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (D.S.); (A.B.); (A.Z.); (D.U.); (R.L.); (V.J.); (V.K.); (B.S.-S.); (L.T.-T.)
| | | | | | | | | | | | | | | | | | | | - Eugenijus Norkus
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (D.S.); (A.B.); (A.Z.); (D.U.); (R.L.); (V.J.); (V.K.); (B.S.-S.); (L.T.-T.)
| |
Collapse
|
2
|
de Lima SLS, Pereira FS, de Lima RB, de Freitas IC, Spadotto J, Connolly BJ, Barreto J, Stavale F, Vitorino HA, Fajardo HV, Tanaka AA, Garcia MAS, da Silva AGM. MnO 2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173039. [PMID: 36080076 PMCID: PMC9457901 DOI: 10.3390/nano12173039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/02/2023]
Abstract
Although clean energy generation utilizing the Oxygen Reduction Reaction (ORR) can be considered a promising strategy, this approach remains challenging by the dependence on high loadings of noble metals, mainly Platinum (Pt). Therefore, efforts have been directed to develop new and efficient electrocatalysts that could decrease the Pt content (e.g., by nanotechnology tools or alloying) or replace them completely in these systems. The present investigation shows that high catalytic activity can be reached towards the ORR by employing 1.8 ± 0.7 nm Ir nanoparticles (NPs) deposited onto MnO2 nanowires surface under low Ir loadings (1.2 wt.%). Interestingly, we observed that the MnO2-Ir nanohybrid presented high catalytic activity for the ORR close to commercial Pt/C (20.0 wt.% of Pt), indicating that it could obtain efficient performance using a simple synthetic procedure. The MnO2-Ir electrocatalyst also showed improved stability relative to commercial Pt/C, in which only a slight activity loss was observed after 50 reaction cycles. Considering our findings, the superior performance delivered by the MnO2-Ir nanohybrid may be related to (i) the significant concentration of reduced Mn3+ species, leading to increased concentration of oxygen vacancies at its surface; (ii) the presence of strong metal-support interactions (SMSI), in which the electronic effect between MnOx and Ir may enhance the ORR process; and (iii) the unique structure comprised by Ir ultrasmall sizes at the nanowire surface that enable the exposure of high energy surface/facets, high surface-to-volume ratios, and their uniform dispersion.
Collapse
Affiliation(s)
- Scarllett L. S. de Lima
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225 Gávea, Rio de Janeiro 22453-900, RJ, Brazil
| | - Fellipe S. Pereira
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Roberto B. de Lima
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Isabel C. de Freitas
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| | - Julio Spadotto
- Department of Materials, Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Brian J. Connolly
- Department of Materials, Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Jade Barreto
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil
| | - Fernando Stavale
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil
| | - Hector A. Vitorino
- South American Center for Education and Research in Public Health, Universidad Norbert Wiener, Lima 15108, Peru
| | - Humberto V. Fajardo
- Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Auro A. Tanaka
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Marco A. S. Garcia
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Anderson G. M. da Silva
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225 Gávea, Rio de Janeiro 22453-900, RJ, Brazil
| |
Collapse
|
3
|
de Mello Rodrigues MR, Ferreira RM, dos Santos Pereira F, Anchieta e Silva F, Silva ACA, Vitorino HA, Júnior JDJGV, Tanaka AA, Garcia MAS, Rodrigues TS. Application of AgPt Nanoshells in Direct Methanol Fuel Cells: Experimental and Theoretical Insights of Design Electrocatalysts over Methanol Crossover Effect. ChemCatChem 2022. [DOI: 10.1002/cctc.202200605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Felipe Anchieta e Silva
- UFRJ: Universidade Federal do Rio de Janeiro Programa de Engenharia da Nanotecnologia BRAZIL
| | | | - Hector Aguilar Vitorino
- Universidad Norbert Wiener South American Center for Education and Research in Public Health Lima PERU
| | | | | | | | - Thenner Silva Rodrigues
- Universidade Federal do Rio de Janeiro Programa de Engenharia da Nanotecnologia v. Horácio Macedo, 2030 21.941-972 Rio de Janeiro BRAZIL
| |
Collapse
|
4
|
Wen BY, Chen QQ, Radjenovic PM, Dong JC, Tian ZQ, Li JF. In Situ Surface-Enhanced Raman Spectroscopy Characterization of Electrocatalysis with Different Nanostructures. Annu Rev Phys Chem 2021; 72:331-351. [PMID: 33472380 DOI: 10.1146/annurev-physchem-090519-034645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity. To improve the material and morphological universalities, researchers have employed different kinds of nanostructures that have played important roles in the development of SERS technologies. Different strategies, such as so-called borrowing enhancement from shell-isolated modes and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)-satellite structures, have been proposed to obtain highly effective Raman enhancement, and these methods make it possible to apply SERS to various electrocatalytic systems. Here, we discuss the development of SERS technology, focusing on its applications in different electrocatalytic reactions (such as oxygen reduction reactions) and at different nanostructure surfaces, and give a brief outlook on its development.
Collapse
Affiliation(s)
- Bao-Ying Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Qing-Qi Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, College of Energy, Xiamen University, Xiamen 361005, China; ,
| |
Collapse
|
5
|
Zhang G, Kucernak A. Gas Accessible Membrane Electrode (GAME): A Versatile Platform for Elucidating Electrocatalytic Processes Using Real-Time and in Situ Hyphenated Electrochemical Techniques. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guohui Zhang
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anthony Kucernak
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Petrii OA. The Progress in Understanding the Mechanisms of Methanol and Formic Acid Electrooxidation on Platinum Group Metals (a Review). RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519010129] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Shatla A, Hassan K, Abd-El-Latif A, Hathoot A, Baltruschat H, Abdel-Azzem M. Poly 1,5 diaminonaphthalene supported Pt, Pd, Pt/Pd and Pd/Pt nanoparticles for direct formic acid oxidation. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Surface Limited Redox Replacement Deposition of Platinum Ultrathin Films on Gold: Thickness and Structure Dependent Activity towards the Carbon Monoxide and Formic Acid Oxidation reactions. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Banerjee I, Kumaran V, Santhanam V. Fabrication of electrodes with ultralow platinum loading by RF plasma processing of self-assembled arrays of Au@Pt nanoparticles. NANOTECHNOLOGY 2016; 27:305401. [PMID: 27302373 DOI: 10.1088/0957-4484/27/30/305401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Conductive, carbon-free, electrocatalytically active, nanostructured electrodes with ultra-low platinum loading were fabricated using self-assembly of octadecanethiol-coated Au@Pt nanoparticles followed by RF plasma treatment. Bilayer arrays of Au@Pt nanoparticles with platinum loadings of 0.50, 1.04, 1.44, and 1.75 μg cm(-2) (corresponding to 0.5, 1, 1.5 and 2 atomic layer coverage of platinum on nominally 5 nm gold core) were subjected to RF argon plasma treatment for various durations and their electrical conductivity, morphological evolution, and electrocatalytic activity characterized. Samples with monolayer and above platinum coverages exhibit maximum electrochemically active surface areas values of ∼100 m(2)/gpt and specific activities that are ∼4× to 6× of a reference platinum nanoparticle bilayer array. The underlying gold core influences the structural evolution of the samples upon RF plasma treatment and leads to the formation of highly active Pt(110) facets on the surface at an optimal plasma treatment duration, which also corresponds to the onset of a sharp decline in lateral sheet resistance. The sample having a two atom thick platinum coating has the highest total mass activity of 48 ± 3 m(2)/g(pt+au), corresponding to 44% Pt atom utilization, while also exhibiting enhanced CO tolerance as well as high methanol oxidation reaction and oxygen reduction reaction activity.
Collapse
Affiliation(s)
- Ipshita Banerjee
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
10
|
Kitahara M, Kubara S, Takai A, Takimoto D, Enomoto S, Yamauchi Y, Sugimoto W, Kuroda K. Preparation of Mesoporous Bimetallic Au-Pt with a Phase-Segregated Heterostructure Using Mesoporous Silica. Chemistry 2015; 21:19142-8. [PMID: 26586355 DOI: 10.1002/chem.201503174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 11/06/2022]
Abstract
Mesoporous bimetallic Au-Pt with a phase-segregated heterostructure has been prepared by using mesoporous silica SBA-15 as a template. Au nanoparticles were prepared as a seed metal within the mesopores, and subsequently Pt was deposited, sandwiching the Au seeds. Energy-dispersive X-ray (EDX) spectral mapping showed that the framework of mesoporous bimetallic Au-Pt, prepared by removing the silica template with HF, was composed of Au nanoparticles joined with Pt nanowires. The Au/Pt ratio of the mesoporous bimetallic Au-Pt could be varied by controlling the number of Au deposition cycles. Pre-adsorbed CO (COad) stripping voltammetry of the mesoporous bimetallic Au-Pt showed that the surfaces of the joined bimetallic structure were electrochemically active. This could be attributed to the open framework structure having a high ratio of exposed bimetallic mesopore surfaces. The described preparative approach, involving a mesoporous silica template and stepwise deposition within the mesopores, enables control of the nanostructure of the bimetallic material, which is greatly promising for the further development of synthetic methodologies for bimetallic structures.
Collapse
Affiliation(s)
- Masaki Kitahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo 169-8555 (Japan), Fax: (+81) 3-5286-3199
| | - Saori Kubara
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo 169-8555 (Japan), Fax: (+81) 3-5286-3199
| | - Azusa Takai
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo 169-8555 (Japan), Fax: (+81) 3-5286-3199
| | - Daisuke Takimoto
- Materials and Chemical Engineering, Faculty of Textile Science and Technology, Shinshu University, Tokida-3, Ueda, Nagano 386-8567 (Japan)
| | - Shinpei Enomoto
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Nishiwaseda-2, Shinjuku-ku, Tokyo 169-0051 (Japan)
| | - Yusuke Yamauchi
- World Premier International (WPI) Research Center for Materials, Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki-1, Tsukuba, Ibaraki 305-0044 (Japan)
| | - Wataru Sugimoto
- Materials and Chemical Engineering, Faculty of Textile Science and Technology, Shinshu University, Tokida-3, Ueda, Nagano 386-8567 (Japan)
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo 169-8555 (Japan), Fax: (+81) 3-5286-3199. .,Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Nishiwaseda-2, Shinjuku-ku, Tokyo 169-0051 (Japan).
| |
Collapse
|
11
|
Podlovchenko B, Maksimov Y. Peculiarities in the electrocatalytic behavior of ultralow platinum deposits on gold synthesized by galvanic displacement. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Sreekanth N, Phani KL. Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM. Chem Commun (Camb) 2015; 50:11143-6. [PMID: 25109460 DOI: 10.1039/c4cc03099k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discovered using SECM of the electro-reduction of CO2 on a Au substrate in CO2-saturated KHCO3 solutions that (i) formate comes solely from the direct reduction of bicarbonate; and (ii) CO forms only from CO2 reduction (under low pH conditions) and at higher applied potentials. The results point to the possibility of the selective reduction of CO2 to the formate product.
Collapse
Affiliation(s)
- Narayanaru Sreekanth
- Nanoscale Electrocatalysis Group, Electrodics & Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630006, India.
| | | |
Collapse
|
13
|
Ahn SH, Liu Y, Moffat TP. Ultrathin Platinum Films for Methanol and Formic Acid Oxidation: Activity as a Function of Film Thickness and Coverage. ACS Catal 2015. [DOI: 10.1021/cs501228j] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sang Hyun Ahn
- Materials Science and Engineering
Division, Material Measurement Laboratory, National Institute of Standard and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Yihua Liu
- Materials Science and Engineering
Division, Material Measurement Laboratory, National Institute of Standard and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Thomas P. Moffat
- Materials Science and Engineering
Division, Material Measurement Laboratory, National Institute of Standard and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
14
|
Jin C, Zhang J, Huo Q, Dong R. Significant activity improvement of Au/C by Pt deposition for electrooxidation of ethanol. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Potentiostatic electrodeposition of Pt on GC and on HOPG at low loadings: Analysis of the deposition transients and the structure of Pt deposits. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.10.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Harvey CE, Weckhuysen BM. Surface- and Tip-Enhanced Raman Spectroscopy as Operando Probes for Monitoring and Understanding Heterogeneous Catalysis. Catal Letters 2014; 145:40-57. [PMID: 26052185 PMCID: PMC4449125 DOI: 10.1007/s10562-014-1420-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/04/2014] [Indexed: 11/21/2022]
Abstract
ABSTRACT Surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) were until recently limited in their applicability to the majority of heterogeneous catalytic reactions. Recent developments begin to resolve the conflicting experimental requirements for SERS and TERS on the one hand, and heterogeneous catalysis on the other hand. This article discusses the development and use of SERS and TERS to study heterogeneous catalytic reactions, and the exciting possibilities that may now be within reach thanks to the latest technical developments. This will be illustrated with showcase examples from photo- and electrocatalysis. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Clare E. Harvey
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
17
|
Rudnev AV, Kuzume A, Fu Y, Wandlowski T. CO Oxidation on Pt(100): New Insights based on Combined Voltammetric, Microscopic and Spectroscopic Experiments. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Brites Helú MA, Gennero de Chialvo MR, Chialvo AC, Fernández JL. Nanoparticle ensemble electrodes: fabrication by short-pulse sputtering and characterization by scanning probe microscopy and voltammetry. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2465-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Surface-enhanced resonance Raman scattering (SERRS) as a tool for the studies of electron transfer proteins attached to biomimetic surfaces: Case of cytochrome c. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Muralidharan R, McIntosh M, Li X. In situ surface-enhanced Raman spectroscopic study of formic acid electrooxidation on spontaneously deposited platinum on gold. Phys Chem Chem Phys 2013; 15:9716-25. [PMID: 23674096 DOI: 10.1039/c3cp51128f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Present formic acid fuel cell efficiency is limited by low kinetics at the anode, indicating the need for effective catalysts to improve the formic acid oxidation. As a prerequisite, the nature of adsorbed species and specifically the reaction intermediates formed in this process needs to be examined. This work focuses on the electrooxidation of formic acid and the nature of the intermediates at a platinum-modified gold surface prepared through spontaneous deposition using a combination of electrochemistry and in situ surface enhanced Raman spectroscopy (SERS). This Pt-modified gold electrode surface assists in oxidizing formic acid at potentials as low as 0.0 V vs. Ag/AgCl which is 0.15 V more negative than a bare Pt surface. The oxidation current obtained on the Pt-modified gold electrode is 72 times higher than on a bare Au surface and 5 times higher than on a bare Pt surface at the same potential. In situ SERS has revealed the involvement of formate at a low frequency as the primary intermediate in this electrooxidation process. While previous studies mainly focused on the formate mode at ca. 1322 cm(-1), it is the first time that a formate peak at ca. 300 cm(-1) was observed on a Pt or Pt-associated surface. A unique relationship has been observed between the formic acid oxidation currents and the SERS intensity of this formate adsorbate. Furthermore, the characteristic Stark effect of the formate proves the strong interaction between the adsorbate and the catalyst. Both electrochemical and spectroscopic results suggest that the formic acid electrooxidation takes place by the dehydrogenation pathway involving a low frequency formate intermediate on the Pt-modified gold electrode catalyst.
Collapse
|
21
|
Possible tuning fabrication of nanoplatinum particles with the conducting copolymer films and their behavior toward the electrooxidation of methanol. J Appl Polym Sci 2012. [DOI: 10.1002/app.38815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
|
23
|
Jin C, Sun X, Chen Z. Electrocatalytic Oxidation of C3Alcohols on Au, Pt and Pt-Modified Au Electrodes. Chem Eng Technol 2012. [DOI: 10.1002/ceat.201100593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Xia Y, Liu J, Huang W, Li Z. Electrochemical fabrication of clean dendritic Au supported Pt clusters for electrocatalytic oxidation of formic acid. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.03.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Huang Y, Zheng S, Lin X, Su L, Guo Y. Microwave synthesis and electrochemical performance of a PtPb alloy catalyst for methanol and formic acid oxidation. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2011.12.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Prieto MJ, Rodrigues Filho UP, Landers R, Tremiliosi-Filho G. The ethanol electrooxidation at Pt layers deposited on polycrystalline Au. Phys Chem Chem Phys 2012; 14:599-606. [DOI: 10.1039/c1cp22390a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Düdükcü M, Beytaroğlu A, Yilmaz N, Köleli F. Characterization of stainless steel electrode modified by a thin film of polyaniline containing pt particles and its electrocatalytic activity for methanol oxidation. RUSS J ELECTROCHEM+ 2011. [DOI: 10.1134/s1023193511080039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
|
29
|
Patten HV, Ventosa E, Colina A, Ruiz V, López-Palacios J, Wain AJ, Lai SCS, Macpherson JV, Unwin PR. Influence of ultrathin poly-(3,4-ethylenedioxythiophene) (PEDOT) film supports on the electrodeposition and electrocatalytic activity of discrete platinum nanoparticles. J Solid State Electrochem 2011. [DOI: 10.1007/s10008-011-1446-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Abstract
This review discusses the role of the detailed nanoscale structure of catalytic surfaces on the activity of various electrocatalytic reactions of importance for fuel cells, hydrogen production, and other environmentally important catalytic reactions, such as carbon monoxide oxidation, methanol and ethanol oxidation, ammonia oxidation, nitric oxide reduction, hydrogen evolution, and oxygen reduction. Specifically, results and insights obtained from surface-science single-crystal-based model experiments are linked to experiments on well-defined shape-controlled nanoparticles. A classification of structure sensitive effects in electrocatalysis is suggested, based both on empirical grounds and on quantum-chemical viz. thermochemical considerations. The mutual relation between the two classification schemes is also discussed. The review underscores the relevance of single-crystal modeling of nanoscale effects in catalysis, and points to the special role of two kinds of active sites for electrocatalysis on nanoparticulate surfaces: (i) steps and defects in (111) terraces or facets, and (ii) long-range (100) terraces or facets.
Collapse
Affiliation(s)
- Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300, RA, Leiden, The Netherlands.
| |
Collapse
|
31
|
Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt–Co alloys. J Solid State Electrochem 2011. [DOI: 10.1007/s10008-011-1389-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
5 Structure and Reactivity of Transition Metal Chalcogenides toward the Molecular Oxygen Reduction Reaction. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4419-5580-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
33
|
Jin C, Sun C, Dong R, Chen Z. Platinum modification of gold and electrocatalytic oxidation of ethylene glycol on Pt-modified Au electrodes. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
|
35
|
Rincón A, Pérez M, Gutiérrez C. Dependence of low-potential CO electrooxidation on the number of Pt monolayers on gold. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.01.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Obradović MD, Tripković AV, Gojković SL. The origin of high activity of Pt–Au surfaces in the formic acid oxidation. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.08.038] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Patra S, Munichandraiah N. Electrooxidation of methanol on Pt-modified conductive polymer PEDOT. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1732-8. [PMID: 19117379 DOI: 10.1021/la803099w] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Platinum nanoparticles on a conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), exhibit a high catalytic activity for electrooxidation of methanol. Pt nanoparticles are prepared by potentiostatic deposition in chloroplatinic acid solution at 0.1 V versus standard calomel electrode (SCE) on PEDOT coated carbon paper. PEDOT on the substrate facilitates the formation of uniform, well-dispersed, small clusters of Pt that consist of nanosize particles. The cyclic voltammogram of methanol oxidation is characterized by a forward oxidation peak current at 0.60 V vs SCE and a backward oxidation peak current at 0.50 V vs SCE. The mass specific peak current is found to be as high as 614 mA mg(-1). The effects of concentration of H2SO4, mass of Pt, and quantity of PEDOT on mass specific activity are studied.
Collapse
Affiliation(s)
- S Patra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | | |
Collapse
|
38
|
Influence of surface morphology on methanol oxidation at a glassy carbon-supported pt catalyst. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2008. [DOI: 10.2298/jsc0809845s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Platinum supported on glassy carbon (GC) was used as a model system for studying the influence of the surface morphology of a Pt catalyst on methanol oxidation in alkaline and acidic solutions. Platinum was deposited by the potential step method on GC samples from H2SO4 + H2PtCl6 solution under the same conditions with loadings from 10 to 80 mg cm-2. AFM and STM images of the GC/Pt electrodes showed that the Pt was deposited in the form of 3D agglomerates composed of spherical particles. Longer deposition times resulted in increased growth of Pt forms and a decrease in the specific area of the Pt. The real surface area of Pt increased with loading but the changes were almost negligible at higher loadings. Nevertheless, both the specific and mass activity of platinum supported on glassy carbon for methanol oxidation in acidic and in alkaline solutions exhibit a volcanic dependence with respect to the platinum loading. The increase in the activity can be explained by the increasing the particle size with the loading and thus an increase in the contiguous Pt sites available for adsorption and decomposition of methanol. However, the decrease in the activity of the catalyst with further increase of loading and particle size after reaching the maximum is related to the decrease of active sites available for methanol adsorption and their accessibility as a result of more close proximity and pronounced coalescence of the Pt particles.
Collapse
|