1
|
Li P, Jiao Y, Huang J, Chen S. Electric Double Layer Effects in Electrocatalysis: Insights from Ab Initio Simulation and Hierarchical Continuum Modeling. JACS AU 2023; 3:2640-2659. [PMID: 37885580 PMCID: PMC10598835 DOI: 10.1021/jacsau.3c00410] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Structures of the electric double layer (EDL) at electrocatalytic interfaces, which are modulated by the material properties, the electrolyte characteristics (e.g., the pH, the types and concentrations of ions), and the electrode potential, play crucial roles in the reaction kinetics. Understanding the EDL effects in electrocatalysis has attracted substantial research interest in recent years. However, the intrinsic relationships between the specific EDL structures and electrocatalytic kinetics remain poorly understood, especially on the atomic scale. In this Perspective, we briefly review the recent advances in deciphering the EDL effects mainly in hydrogen and oxygen electrocatalysis through a multiscale approach, spanning from the atomistic scale simulated by ab initio methods to the macroscale by a hierarchical approach. We highlight the importance of resolving the local reaction environment, especially the local hydrogen bond network, in understanding EDL effects. Finally, some of the remaining challenges are outlined, and an outlook for future developments in these exciting frontiers is provided.
Collapse
Affiliation(s)
- Peng Li
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuzhou Jiao
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Huang
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Theory
of Electrocatalytic Interfaces, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Shengli Chen
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Domínguez-Flores F, Melander MM. Approximating constant potential DFT with canonical DFT and electrostatic corrections. J Chem Phys 2023; 158:144701. [PMID: 37061493 DOI: 10.1063/5.0138197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
The complexity of electrochemical interfaces has led to the development of several approximate density functional theory (DFT)-based schemes to study reaction thermodynamics and kinetics as a function of electrode potential. While fixed electrode potential conditions can be simulated with grand canonical ensemble DFT (GCE-DFT), various electrostatic corrections on canonical, constant charge DFT are often applied instead. In this work, we present a systematic derivation and analysis of the different electrostatic corrections on canonical DFT to understand their physical validity, implicit assumptions, and scope of applicability. Our work highlights the need to carefully address the suitability of a given model for the problem under study, especially if physical or chemical insight in addition to reaction energetics is sought. In particular, we analytically show that the different corrections cannot differentiate between electrostatic interactions and covalent or charge-transfer interactions. By numerically testing different models for CO2 adsorption on a single-atom catalyst as a function of the electrode potential, we further show that computed capacitances, dipole moments, and the obtained physical insight depend sensitively on the chosen approximation. These features limit the scope, generality, and physical insight of these corrective schemes despite their proven practicality for specific systems and energetics. Finally, we suggest guidelines for choosing different electrostatic corrections and propose the use of conceptual DFT to develop more general approximations for electrochemical interfaces and reactions using canonical DFT.
Collapse
Affiliation(s)
- Fabiola Domínguez-Flores
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Marko M Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
3
|
Xin X, Zhang Y, Wang R, Wang Y, Guo P, Li X. Hydrovoltaic effect-enhanced photocatalysis by polyacrylic acid/cobaltous oxide–nitrogen doped carbon system for efficient photocatalytic water splitting. Nat Commun 2023; 14:1759. [PMID: 36997506 PMCID: PMC10063643 DOI: 10.1038/s41467-023-37366-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/12/2023] [Indexed: 04/01/2023] Open
Abstract
AbstractSevere carrier recombination and the slow kinetics of water splitting for photocatalysts hamper their efficient application. Herein, we propose a hydrovoltaic effect-enhanced photocatalytic system in which polyacrylic acid (PAA) and cobaltous oxide (CoO)–nitrogen doped carbon (NC) achieve an enhanced hydrovoltaic effect and CoO–NC acts as a photocatalyst to generate H2 and H2O2 products simultaneously. In this system, called PAA/CoO–NC, the Schottky barrier height between CoO and the NC interface decreases by 33% due to the hydrovoltaic effect. Moreover, the hydrovoltaic effect induced by H+ carrier diffusion in the system generates a strong interaction between H+ ions and the reaction centers of PAA/CoO–NC, improving the kinetics of water splitting in electron transport and species reaction. PAA/CoO–NC exhibits excellent photocatalytic performance, with H2 and H2O2 production rates of 48.4 and 20.4 mmol g−1 h−1, respectively, paving a new way for efficient photocatalyst system construction.
Collapse
|
4
|
Chen W, Zhang LL, Wei Z, Zhang MK, Cai J, Chen YX. The electrostatic effect and its role in promoting electrocatalytic reactions by specifically adsorbed anions. Phys Chem Chem Phys 2023; 25:8317-8330. [PMID: 36892566 DOI: 10.1039/d2cp04547h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The adsorption of anions and its impact on electrocatalytic reactions are fundamental topics in electrocatalysis. Previous studies revealed that adsorbed anions display an overall poisoning effect in most cases. However, for a few reactions such as the hydrogen evolution reaction (HER), oxidation of small organic molecules (SOMs), and reduction of CO2 and O2, some specifically adsorbed anions can promote their reaction kinetics under certain conditions. The promotion effect is frequently attributed to the adsorbate induced modification of the nature of the active sites, the change of the adsorption configuration and free energy of the key reactive intermediate which consequently change the activation energy, the pre-exponential factor of the rate determining step etc. In this paper, we will give a mini review of the indispensable role of the classical double layer effect in enhancing the kinetics of electrocatalytic reactions by anion adsorption. The ubiquitous electrostatic interactions change both the potential distribution and the concentration distribution of ionic species across the electric double layer (EDL), which alters the electrochemical driving force and effective concentration of the reactants. The contribution to the overall kinetics is highlighted by taking HER, oxidation of SOMs, reduction of CO2 and O2, as examples.
Collapse
Affiliation(s)
- Wei Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Lu-Lu Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Zhen Wei
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Meng-Ke Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Jun Cai
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Yan-Xia Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Huang J. Zooming into the Inner Helmholtz Plane of Pt(111)-Aqueous Solution Interfaces: Chemisorbed Water and Partially Charged Ions. JACS AU 2023; 3:550-564. [PMID: 36873696 PMCID: PMC9975841 DOI: 10.1021/jacsau.2c00650] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The double layer on transition metals, i.e., platinum, features chemical metal-solvent interactions and partially charged chemisorbed ions. Chemically adsorbed solvent molecules and ions are situated closer to the metal surface than electrostatically adsorbed ions. This effect is described tersely by the concept of an inner Helmholtz plane (IHP) in classical double layer models. The IHP concept is extended here in three aspects. First, a refined statistical treatment of solvent (water) molecules considers a continuous spectrum of orientational polarizable states, rather than a few representative states, and non-electrostatic, chemical metal-solvent interactions. Second, chemisorbed ions are partially charged, rather than being electroneutral or having integral charges as in the solution bulk, with the coverage determined by a generalized, energetically distributed adsorption isotherm. The surface dipole moment induced by partially charged, chemisorbed ions is considered. Third, considering different locations and properties of chemisorbed ions and solvent molecules, the IHP is divided into two planes, namely, an AIP (adsorbed ion plane) and ASP (adsorbed solvent plane). The model is used to study how the partially charged AIP and polarizable ASP lead to intriguing double-layer capacitance curves that are different from what the conventional Gouy-Chapman-Stern model describes. The model provides an alternative interpretation for recent capacitance data of Pt(111)-aqueous solution interfaces calculated from cyclic voltammetry. This revisit brings forth questions regarding the existence of a pure double-layer region at realistic Pt(111). The implications, limitations, and possible experimental confirmation of the present model are discussed.
Collapse
|
6
|
Qin HG, Li FZ, Du YF, Yang LF, Wang H, Bai YY, Lin M, Gu J. Quantitative Understanding of Cation Effects on the Electrochemical Reduction of CO 2 and H + in Acidic Solution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hai-Gang Qin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Fu-Zhi Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Yun-Fan Du
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Lin-Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Hao Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Yi-Yang Bai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Meng Lin
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Jun Gu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| |
Collapse
|
7
|
Electric Double Layer: The Good, the Bad, and the Beauty. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The electric double layer (EDL) is the most important region for electrochemical and heterogeneous catalysis. Because of it, its modeling and investigation are something that can be found in the literature for a long time. However, nowadays, it is still a hot topic of investigation, mainly because of the improvement in simulation and experimental techniques. The present review aims to present the classical models for the EDL, as well as presenting how this region affects electrochemical data in everyday experimentation, how to obtain and interpret information about EDL, and, finally, how to obtain some molecular point of view insights on it.
Collapse
|
8
|
Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat Catal 2022. [DOI: 10.1038/s41929-022-00761-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Khadke P, Tichter T, Boettcher T, Muench F, Ensinger W, Roth C. A simple and effective method for the accurate extraction of kinetic parameters using differential Tafel plots. Sci Rep 2021; 11:8974. [PMID: 33903627 PMCID: PMC8076256 DOI: 10.1038/s41598-021-87951-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/31/2021] [Indexed: 11/30/2022] Open
Abstract
The practice of estimating the transfer coefficient (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α) and the exchange current (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{0}$$\end{document}i0) by arbitrarily placing a straight line on Tafel plots has led to high variance in these parameters between different research groups. Generating Tafel plots by finding kinetic current, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{k}$$\end{document}ik from the conventional mass transfer correction method does not guarantee an accurate estimation of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{0}$$\end{document}i0. This is because a substantial difference in values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{0}$$\end{document}i0 can arise from only minor deviations in the calculated values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{k}$$\end{document}ik. These minor deviations are often not easy to recognise in polarisation curves and Tafel plots. Recalling the IUPAC definition of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α , the Tafel plots can be alternatively represented as differential Tafel plots (DTPs) by taking the first order differential of Tafel plots with respect to overpotential. Without further complex processing of the existing raw data, many crucial observations can be made from DTP which is otherwise very difficult to observe from Tafel plots. These for example include a) many perfectly looking experimental linear Tafel plots (R2 > 0.999) can give rise to incorrect kinetic parameters b) substantial differences in values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{0}$$\end{document}i0 can arise when the limiting current (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{L}$$\end{document}iL) is just off by 5% while performing the mass transfer correction c) irrespective of the magnitude of the double layer charging current (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{\mathrm{c}}$$\end{document}ic), the Tafel plots can still get significantly skewed when the ratio of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{0}/{i}_{c}$$\end{document}i0/ic is small. Hence, in order to determine accurate values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}α and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{0}$$\end{document}i0, we show how the DTP approach can be applied to experimental polarisation curves having well defined \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{L}$$\end{document}iL, poorly defined \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{L}$$\end{document}iL and no \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i}_{L}$$\end{document}iL at all.
Collapse
Affiliation(s)
- Prashant Khadke
- Faculty of Engineering Sciences, University of Bayreuth, Universitaetsstr.30, 95440, Bayreuth, Germany.
| | - Tim Tichter
- Physical and Theoretical Chemistry, Free University of Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Tim Boettcher
- Department of Materials- and Geoscience, Technische Universitaet Darmstadt, Alarich-Weiss-Str. 2, 64287, Darmstadt, Germany
| | - Falk Muench
- Department of Materials- and Geoscience, Technische Universitaet Darmstadt, Alarich-Weiss-Str. 2, 64287, Darmstadt, Germany
| | - Wolfgang Ensinger
- Department of Materials- and Geoscience, Technische Universitaet Darmstadt, Alarich-Weiss-Str. 2, 64287, Darmstadt, Germany
| | - Christina Roth
- Faculty of Engineering Sciences, University of Bayreuth, Universitaetsstr.30, 95440, Bayreuth, Germany
| |
Collapse
|
10
|
López-Cázares MI, Isaacs-Páez ED, Ascacio-Valdés J, Aguilar-González CN, Rangel-Mendez JR, Chazaro-Ruiz LF. Electro-assisted naproxen adsorption followed by its electrodegradation and simultaneous electroreactivation of the activated carbon electrode. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Li M, Liu S, Xie L, Yan J, Lagrost C, Wang S, Feng G, Hapiot P, Mao B. Charge Transfer Kinetics at Ag(111) Single Crystal Electrode/Ionic Liquid Interfaces: Dependence on the Cation Alkyl Side Chain Length. ChemElectroChem 2021. [DOI: 10.1002/celc.202100094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miangang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shuai Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Liqiang Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Corinne Lagrost
- Université de Rennes 1 Sciences Chimiques de Rennes (Equipe MaCSE), and CNRS, UMR No. 6226 Campus de Beaulieu. Bat 10C 35042 Rennes Cedex France
| | - Shuai Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Philippe Hapiot
- Université de Rennes 1 Sciences Chimiques de Rennes (Equipe MaCSE), and CNRS, UMR No. 6226 Campus de Beaulieu. Bat 10C 35042 Rennes Cedex France
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
12
|
Bollella P, Melman A, Katz E. Electrochemically Generated Interfacial pH Change: Application to Signal‐Triggered Molecule Release. ChemElectroChem 2020. [DOI: 10.1002/celc.202000615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular ScienceClarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Artem Melman
- Department of Chemistry and Biomolecular ScienceClarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular ScienceClarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| |
Collapse
|
13
|
Bodappa N, Fu YC, Broekmann P, Furrer J, Zick K, Vesztergom S, Tahara H, Sagara T. Electron transfer controlled by solvent and counter-anion dynamics in electrochemistry of viologen-type ionic liquid. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Li GF, Divinagracia M, Labata MF, Ocon JD, Abel Chuang PY. Electrolyte-Dependent Oxygen Evolution Reactions in Alkaline Media: Electrical Double Layer and Interfacial Interactions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33748-33758. [PMID: 31436074 DOI: 10.1021/acsami.9b06889] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Traditional understanding of electrocatalytic reactions generally focuses on either covalent interactions between adsorbates and the reaction interface (i.e., electrical double layer, EDL) or electrostatic interactions between electrolyte ions. Here, our work provides valuable insights into interfacial structure and ionic interactions during alkaline oxygen evolution reaction (OER). The importance of inner-sphere OH- adsorption is demonstrated as the IrOx activity in 4.0 M KOH is 6.5 times higher than that in 0.1 M KOH. Adding NaNO3 as a supporting electrolyte, which is found to be inert for long-term stability, complicates the electrocatalytic reaction in a half cell. The nonspecially adsorbed Na+ in the outer compact interfacial layer is suggested to form a stronger noncovalent interaction with OH- through hydrogen bond than adsorbed K+, leading to the decrease of interfacial OH- mobility. This hypothesis highlights the importance of outer-sphere adsorption for the OER, which is generally recognized as a pure inner-sphere process. Meanwhile, based on our experimental observations, the pseudocapacitive behavior of solid-state redox might be more reliable in quantifying active sites for OER than that measured from the conventional EDL charging capacitive process. The interfacial oxygen transport is observed to improve with increasing electrolyte conductivity, ascribing to the increased accessible active sites. The durability results in a liquid alkaline electrolyzer which shows that adding NaNO3 into KOH solution leads to additional degradation of OER activity and long-term stability. These findings provide an improved understanding of the mechanistic details and structural motifs required for efficient and robust electrocatalysis.
Collapse
Affiliation(s)
- Guang-Fu Li
- Department of Mechanical Engineering , University of California Merced , California 95343 , United States
| | - Maricor Divinagracia
- Department of Mechanical Engineering , University of California Merced , California 95343 , United States
- Department of Chemical Engineering, College of Engineering , University of the Philippines Diliman , Quezon City 1101 , Philippines
| | - Marc Francis Labata
- Environmental Systems Graduate Program , University of California , Merced 94343 , California , United States
| | - Joey D Ocon
- Department of Chemical Engineering, College of Engineering , University of the Philippines Diliman , Quezon City 1101 , Philippines
| | - Po-Ya Abel Chuang
- Department of Mechanical Engineering , University of California Merced , California 95343 , United States
- Environmental Systems Graduate Program , University of California , Merced 94343 , California , United States
| |
Collapse
|
15
|
Sokolov SV, Eloul S, Kätelhön E, Batchelor-McAuley C, Compton RG. Electrode-particle impacts: a users guide. Phys Chem Chem Phys 2018; 19:28-43. [PMID: 27918031 DOI: 10.1039/c6cp07788a] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present a comprehensive guide to nano-impact experiments, in which we introduce newcomers to this rapidly-developing field of research. Central questions are answered regarding required experimental set-ups, categories of materials that can be detected, and the theoretical frameworks enabling the analysis of experimental data. Commonly-encountered issues are considered and presented alongside methods for their solutions.
Collapse
Affiliation(s)
- Stanislav V Sokolov
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Shaltiel Eloul
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Enno Kätelhön
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
16
|
Twenty years of the Journal of Solid State Electrochemistry. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
|
18
|
Bartlett P, Cook D. Measurements of the double layer capacitance for electrodes in supercritical CO2/acetonitrile electrolytes. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|