Mehdi BL, Rutkowska IA, Kulesza PJ, Cox JA. Electrochemically assisted fabrication of size-exclusion films of organically modified silica and application to the voltammetry of phospholipids.
J Solid State Electrochem 2013;
17:1581-1590. [PMID:
23935394 PMCID:
PMC3734865 DOI:
10.1007/s10008-013-2077-4]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Modification of electrodes with nm-scale organically modified silica films with pores diameters controlled at 10- and 50-nm is described. An oxidation catalyst, mixed-valence ruthenium oxide with cyano crosslinks or gold nanoparticles protected by dirhodium-substituted phosophomolybdate (AuNP-Rh2PMo11), was immobilized in the pores. These systems comprise size-exclusion films at which the biological compounds, phosphatidylcholine and cardiolipin, were electrocatalytically oxidized without interference from surface-active concomitants such as bovine serum albumin. 10-nm pores were obtained by adding generation-4 poly(amidoamine) dendrimer, G4-PAMAM, to a (CH3)3SiOCH3 sol. 50-nm pores were obtained by modifying a glassy carbon electrode (GC) with a sub-monolayer film of aminopropyltriethoxylsilane, attaching 50-nm diameter poly(styrene sulfonate), PSS, spheres to the protonated amine, transferring this electrode to a (CH3)3SiOCH3 sol, and electrochemically generating hydronium at uncoated GC sites, which catalyzed ormosil growth around the PSS. Voltammetry of Fe(CN)63- and Ru(NH3)63+ demonstrated the absence of residual charge after removal of the templating agents. With the 50-nm system, the pore structure was sufficiently defined to use layer-by-layer electrostatic assembly of AuNP-Rh2PMo11 therein. Flow injection amperometry of phosphatidylcholine and cardiolipin demonstrated analytical utility of these electrodes.
Collapse