Li Y, Morel A, Gallant D, Mauzeroll J. Oil-Immersed Scanning Micropipette Contact Method Enabling Long-term Corrosion Mapping.
Anal Chem 2020;
92:12415-12422. [PMID:
32786459 DOI:
10.1021/acs.analchem.0c02177]
[Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This work reports the development of an oil-immersed scanning micropipette contact method, a variant of the scanning micropipette contact method, where a thin layer of oil wets the investigated substrate. The oil-immersed scanning micropipette contact method significantly increases the droplet stability, allowing for prolonged mapping and the use of highly evaporative saline solutions regardless of ambient humidity levels. This systematic mapping technique was used to conduct a detailed investigation of localized corrosion taking place at the surface of an AA7075-T73 aluminum alloy in a 3.5 wt % NaCl electrolyte solution, which is typically challenging in the conventional scanning micropipette contact method. Maps of corrosion potentials and corrosion currents extracted from potentiodynamic polarization curves showed good correlations with the chemical composition of surface features and known galvanic interactions at the microscale level. This demonstrates the viability of the oil-immersed scanning micropipette contact method and opens up the avenue to mechanistic corrosion investigations at the microscale level using aqueous solutions that are prone to evaporation under noncontrolled humidity levels.
Collapse