1
|
Electrochemical and electrophoretic coatings of medical implants by nanomaterials. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
2
|
Safavi MS, Walsh FC, Visai L, Khalil-Allafi J. Progress in Niobium Oxide-Containing Coatings for Biomedical Applications: A Critical Review. ACS OMEGA 2022; 7:9088-9107. [PMID: 35356687 PMCID: PMC8944537 DOI: 10.1021/acsomega.2c00440] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 05/11/2023]
Abstract
Typically, pure niobium oxide coatings are deposited on metallic substrates, such as commercially pure Ti, Ti6Al4 V alloys, stainless steels, niobium, TiNb alloy, and Mg alloys using techniques such as sputter deposition, sol-gel deposition, anodizing, and wet plasma electrolytic oxidation. The relative advantages and limitations of these coating techniques are considered, with particular emphasis on biomedical applications. The properties of a wide range of pure and modified niobium oxide coatings are illustrated, including their thickness, morphology, microstructure, elemental composition, phase composition, surface roughness and hardness. The corrosion resistance, tribological characteristics and cell viability/proliferation of the coatings are illustrated using data from electrochemical, wear resistance and biological cell culture measurements. Critical R&D needs for the development of improved future niobium oxide coatings, in the laboratory and in practice, are highlighted.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
| | - F. C. Walsh
- Electrochemical
Engineering Laboratory & National Centre for Advanced Tribology,
Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Livia Visai
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Jafar Khalil-Allafi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
| |
Collapse
|
3
|
Sikdar S, Menezes PV, Maccione R, Jacob T, Menezes PL. Plasma Electrolytic Oxidation (PEO) Process-Processing, Properties, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1375. [PMID: 34067483 PMCID: PMC8224744 DOI: 10.3390/nano11061375] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 01/19/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a novel surface treatment process to produce thick, dense metal oxide coatings, especially on light metals, primarily to improve their wear and corrosion resistance. The coating manufactured from the PEO process is relatively superior to normal anodic oxidation. It is widely employed in the fields of mechanical, petrochemical, and biomedical industries, to name a few. Several investigations have been carried out to study the coating performance developed through the PEO process in the past. This review attempts to summarize and explain some of the fundamental aspects of the PEO process, mechanism of coating formation, the processing conditions that impact the process, the main characteristics of the process, the microstructures evolved in the coating, the mechanical and tribological properties of the coating, and the influence of environmental conditions on the coating process. Recently, the PEO process has also been employed to produce nanocomposite coatings by incorporating nanoparticles in the electrolyte. This review also narrates some of the recent developments in the field of nanocomposite coatings with examples and their applications. Additionally, some of the applications of the PEO coatings have been demonstrated. Moreover, the significance of the PEO process, its current trends, and its scope of future work are highlighted.
Collapse
Affiliation(s)
- Soumya Sikdar
- Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA; (S.S.); (R.M.)
| | - Pramod V. Menezes
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany;
| | - Raven Maccione
- Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA; (S.S.); (R.M.)
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany;
| | - Pradeep L. Menezes
- Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA; (S.S.); (R.M.)
| |
Collapse
|
4
|
Eduok U. Niobia Nanofiber-Reinforced Protective Niobium Oxide/Acrylate Nanocomposite Coatings. ACS OMEGA 2020; 5:30716-30728. [PMID: 33283120 PMCID: PMC7711932 DOI: 10.1021/acsomega.0c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
In the present study, the corrosion resistance of a new niobium oxide/acrylate hybrid nanocomposite coating doped with niobia nanofibers is investigated. Nanofibers were initially synthesized from niobium(V) chloride precursor in a novel autoclave approach before fabricating the base coating from a two-step process involving the syntheses of acrylate resin via free radical polymerization and niobium oxide gel from niobium ethoxide via a sol-gel technique. Variants of the synthesized nanocomposite coating were incorporated with varying concentrations of niobia nanofibers before spin-coating on Q235 steel substrates to inhibit corrosive electrolytic ion percolation and further enhance corrosion resistance when treated with chloride-enriched corrosive media. The corrosion resistance of these nanocomposite coatings increased with nanofiber content up to an optimum concentration due to the corrosion-inhibiting and protective effects of niobium barrier layers within these coatings. The presence of the niobia nanofibers also promoted improved surface contact angle and toughened mechanical strengths.
Collapse
Affiliation(s)
- Ubong Eduok
- . Tel: +1 (306) 966 7752. Fax: +1 (306) 966 5427
| |
Collapse
|
5
|
Abstract
Plasma Electrolytic Oxidation (PEO) is a surface treatment, similar to anodizing, that produces thick oxide films on the surface of metals. In the present work, PEO coatings were obtained on zinc-aluminized (ZA) carbon steel using a solution containing sodium silicate and potassium hydroxide as electrolyte, and working with high current densities and short treatment times in Direct Current (DC) mode. The thickness of the coating, as well as the surface morphology, were strongly influenced by the process parameters, with different dissolution grades of the ZA layer depending on the current density and treatment time. A compromise between thickness and porosity of the coating was found with low current density/long treatment time or high current density/short treatment time. The PEO layer was mainly composed of aluminum oxides and silicon compounds. The corrosion resistance increased remarkably in the samples with the PEO coating. These PEO coated samples are suitable for sealing treatments that further increase their corrosion properties or will be also an ideal substrate for commercial painting, assuring improved mechanical adhesion and protection even in the presence of damages.
Collapse
|
6
|
Antonini LM, Menezes TL, Dos Santos AG, Takimi AS, Villarinho DJ, Dos Santos BP, Camassola M, Marcuzzo JS, de Fraga Malfatti C. Osteogenic differentiation of bone marrow-derived mesenchymal stem cells on anodized niobium surface. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:104. [PMID: 31493056 DOI: 10.1007/s10856-019-6305-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Currently, titanium and its alloys are the most used materials for biomedical applications. However, because of the high costs of these metals, new materials, such as niobium, have been researched. Niobium appears as a promising material due to its biocompatibility, and excellent corrosion resistance. In this work, anodized niobium samples were produced and characterized. Their capacity to support the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) was also tested. The anodized niobium samples were characterized by SEM, profilometry, XPS, and wettability. BM-MSCs were cultured on the samples during 14 days, and tested for cell adhesion, metabolic activity, alkaline phosphatase activity, and mineralization. Results demonstrated that anodization promotes the formation of a hydrophilic nanoporous oxide layer on the Nb surface, which can contribute to the increase in the metabolic activity, and in osteogenic differentiation of BM-MSCs, as well as to the extracellular matrix mineralization.
Collapse
Affiliation(s)
- Leonardo Marasca Antonini
- LAPEC/PPGE3M, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43427, Sala 232, Porto Alegre, RS, 91501-970, Brazil.
| | - Tiago Lemos Menezes
- LAPEC/PPGE3M, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43427, Sala 232, Porto Alegre, RS, 91501-970, Brazil
| | - Adilar Gonçalves Dos Santos
- LAPEC/PPGE3M, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43427, Sala 232, Porto Alegre, RS, 91501-970, Brazil
| | - Antonio Shigueaki Takimi
- ELETROCORR/PPGE3M, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43427, Sala 216, Porto Alegre, RS, 91501-970, Brazil
| | | | - Bruno Paiva Dos Santos
- Laboratory of Tissue Engineering - BioTis, Inserm U1026, University of Bordeaux, 146 Rue Léo Saignat, Bât. 4A, 2ème étage, Bordeaux, 33076, France
| | - Melissa Camassola
- Programa de Pós-graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaúde), Universidade Luterana do Brasil, Laboratório de Células-Tronco e Engenharia de Tecidos, Av. Farroupilha, São José, Canoas, RS, 92425900, Brazil
| | - Jossano Saldanha Marcuzzo
- INPE, Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1.758 - Jardim da Granja, São José dos Campos, SP, 12228-970, Brazil
| | - Célia de Fraga Malfatti
- LAPEC/PPGE3M, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Prédio 43427, Sala 232, Porto Alegre, RS, 91501-970, Brazil
| |
Collapse
|
7
|
Aliasghari S, Skeldon P, Zhou X, Valizadeh R, Junginger T, Stenning GBG, Burt G. Superconducting properties of PEO coatings containing MgB2 on niobium. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01339-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Niobium treated by Plasma Electrolytic Oxidation with calcium and phosphorus electrolytes. J Mech Behav Biomed Mater 2018; 77:347-352. [DOI: 10.1016/j.jmbbm.2017.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022]
|
9
|
Rizwan M, Alias R, Zaidi UZ, Mahmoodian R, Hamdi M. Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review. J Biomed Mater Res A 2017; 106:590-605. [PMID: 28975693 DOI: 10.1002/jbm.a.36259] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 01/15/2023]
Abstract
Plasma electrolytic oxidation (PEO) is an advance technique to develop porous oxidation layer on light metals, primarily to enhance corrosion and wear resistance. The oxidation layer can also offer a wide variety of mechanical, biomedical, tribological, and antibacterial properties through the incorporation of several ions and particles. Due to the increasing need of antimicrobial surfaces for biomedical implants, antibacterial PEO coatings have been developed through the incorporation of antibacterial agents. Metallic nanoparticles that have been employed most widely as antibacterial agents are reported to demonstrate serious health and environmental threats. To overcome the current limitations of these coatings, there is a significant need to develop antibacterial surfaces that are not harmful for patient's health and environment. Attention of the readers has been directed to utilize bioactive glasses as antibacterial agents for PEO coatings. Bioactive glasses are well known for their excellent bioactivity, biocompatibility, and antibacterial character. PEO coatings incorporated with bioactive glasses can provide environment-friendly antimicrobial surfaces with exceptional bioactivity, biocompatibility, and osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 590-605, 2018.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Metallurgical Engineering, Faculty of Chemical and Process Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - Rodianah Alias
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Manufacturing Technology, Faculty of Innovative Design and Technology, University Sultan Zainal Abidin (UNISZA), Kuala Terengganu, 21030, Malaysia
| | - Umi Zhalilah Zaidi
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Reza Mahmoodian
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Research and Development, Azarin Kar Ind. Co., Industrial Park 1, Kerman, 7635168361, Iran
| | - Mohd Hamdi
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
10
|
Pereira BL, Lepienski CM, Mazzaro I, Kuromoto NK. Apatite grown in niobium by two-step plasma electrolytic oxidation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1235-1241. [DOI: 10.1016/j.msec.2016.10.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/06/2016] [Accepted: 10/16/2016] [Indexed: 12/25/2022]
|
11
|
Surface characterisation and corrosion behaviour of niobium treated in a Ca- and P-containing solution under sparking conditions. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.069] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Veys-Renaux D, Rocca E. Initial stages of multi-phased aluminium alloys anodizing by MAO: micro-arc conditions and electrochemical behaviour. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2935-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|