Szultka-Młyńska M, Janiszewska D, Buszewski B. Molecularly Imprinted Polymers as Solid-Phase Microextraction Fibers for the Isolation of Selected Antibiotics from Human Plasma.
MATERIALS (BASEL, SWITZERLAND) 2021;
14:4886. [PMID:
34500975 PMCID:
PMC8432719 DOI:
10.3390/ma14174886]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to examine the synthesis of novel molecularly imprinted polymer (MIP)-coated polythiophene and poly(3-methylthiophene) solid-phase microextraction fibers using the direct electropolymerization method. Synthesized SPME fibers were characterized with the use of various physicochemical instrumental techniques. MIP-SPME coatings were successfully applied to carry out the selective extraction of selected antibiotic drugs (amoxicillin, cefotaxime, metronidazole) and their metabolites (amoxycilloic acid, amoxicillin diketopiperazine, desacetyl cefotaxime, 3-desacetyl cefotaxime lactone, hydroxymetronidazole). Solid-phase microextraction parameters for the simultaneous determination and identification of target compounds were optimized using the central composite design (CCD), and they accounted for 5-15 min for desorption time, 3-10 for the pH of the desorption solvent, and 30-100 μL for the volume of the desorption solvent. High-performance liquid chromatography and mass spectrometry (MS) detectors such as quadrupole time-of-flight (Q-TOF MS) and triple quadrupole (QqQ MS) were applied to determine and to identify selected antibiotic drugs and their metabolites. The MIP-coated SPME are suitable for the selective extraction of target compounds in biological samples from patients in intensive care units.
Collapse