• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619893)   Today's Articles (71)   Subscriber (49405)
For: Tolmachev YV, Piatkivskyi A, Ryzhov VV, Konev DV, Vorotyntsev MA. Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2805-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Number Cited by Other Article(s)
1
Konev DV, Zader PA, Vorotyntsev MA. Evolution of the Bromate Electrolyte Composition in the Course of Its Electroreduction inside a Membrane-Electrode Assembly with a Proton-Exchange Membrane. Int J Mol Sci 2023;24:15297. [PMID: 37894976 PMCID: PMC10607049 DOI: 10.3390/ijms242015297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]  Open
2
Kartashova NV, Konev DV, Loktionov PA, Glazkov AT, Goncharova OA, Petrov MM, Antipov AE, Vorotyntsev MA. A Hydrogen-Bromate Flow Battery as a Rechargeable Chemical Power Source. MEMBRANES 2022;12:1228. [PMID: 36557135 PMCID: PMC9782483 DOI: 10.3390/membranes12121228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
3
Zader PA, Konev DV, Vorotyntsev MA. Theoretical Analysis of the pH Dependence of Evolution of the System Composition in the Course of Electrolysis of Acidic Aqueous Chloride Solutions. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
4
Konev DV, Goncharova OA, Tolmachev YV, Vorotyntsev MA. The Role of Chlorine Dioxide in the Electroreduction of Chlorates at Low pH. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
5
Vorotyntsev MA, Zader PA. Simulation of Mediator-Catalysis Process inside Redox Flow Battery. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
6
Zader PA, Konev DV, Gun J, Lev O, Vorotyntsev MA. Theoretical Analysis of System’s Composition Changes in the Course of Electrolysis of Acidic Chloride Aqueous Solution. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522100123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
7
Konev DV, Istakova OI, Ruban EA, Glazkov AT, Vorotyntsev MA. Hydrogen-Chlorate Electric Power Source: Feasibility of the Device, Discharge Characteristics and Modes of Operation. Molecules 2022;27:molecules27175638. [PMID: 36080404 PMCID: PMC9457794 DOI: 10.3390/molecules27175638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]  Open
8
Vorotyntsev MA, Volgin VM, Davydov AD. Halate electroreduction from acidic solution at rotating disk electrode: Theoretical study of the steady-state convective-migration-diffusion transport for comparable concentrations of halate ions and protons. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
9
Halate electroreduction via autocatalytic mechanism for rotating disk electrode configuration: Evolution of concentrations and current after large-amplitude potential step. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
10
Petrov MM, Modestov AD, Konev DV, Antipov AE, Loktionov PA, Pichugov RD, Kartashova NV, Glazkov AT, Abunaeva LZ, Andreev VN, Vorotyntsev MA. Redox flow batteries: role in modern electric power industry and comparative characteristics of the main types. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
11
Vorotyntsev MA, Antipov AE. Bromate electroreduction in acidic solution inside rectangular channel under flow-through porous electrode conditions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
12
Hydrogen-bromate flow battery: can one reach both high bromate utilization and specific power? J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04371-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
13
Antipov AE, Vorotyntsev MA, Konev DV, Antipov EM. Bromate-Anion Electroreduction at Rotating Disc Electrode under Steady-State Conditions: Comparison of Numerical and Analytical Solutions for Convective Diffusion Equations in Excess of Protons. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519050033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
14
Electrochemically driven evolution of Br-containing aqueous solution composition. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
15
Petrov MM, Loktionov PA, Konev DV, Antipov AE, Astafiev EA, Vorotyntsev MA. Evolution of Anolyte Composition in the Oxidative Electrolysis of Sodium Bromide in a Sulfuric Acid Medium. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193518130335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
16
Goncharova OA, Glazkov AT, Lizgina KV, Piryazev AA, Koryakin SL, Konev DV, Vorotyntsev MA, Mintsev VB. Electroreduction of the Bromate Anion on a Microelectrode in Excess Acid: Solution of the Inverse Kinetic Problem. DOKLADY CHEMISTRY 2019. [DOI: 10.1134/s0012500819010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
17
Cho KT, Razaulla T. Redox-Mediated Bromate Based Electrochemical Energy System. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2019;166:A286-A296. [DOI: 10.1149/2.0841902jes] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
18
Vorotyntsev MA, Antipov AE, Petrov MM, Pichugov RD, Borisevich EI, Antipov EM, Aldoshin SM. Bromate Reaction on a Rotating Disc Electrode: A New Method of Obtaining Approximate Analytical Solutions for Stationary Regime. DOKLADY CHEMISTRY 2018. [DOI: 10.1134/s0012500818110058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
19
Vorotyntsev M, Аntipov A. Novel procedure towards approximate analytical description of bromate-anion reduction at rotating disk electrode under steady-state transport conditions. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
20
Volgin V, Lyubimov V, Gnidina I, Kabanova T, Davydov A. Simulation of ionic transport in concentrated solutions using bi-velocity method. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
21
Antipov AE, Vorotyntsev MA. Maximum Current Density in the Reduction of the Bromate Anion on a Rotating Disk Electrode: Asymptotic Behavior at Large Thicknesses of the Diffusion Layer. RUSS J ELECTROCHEM+ 2018. [DOI: 10.1134/s1023193518020039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
22
Modestov A, Konev D, Antipov A, Petrov M, Pichugov R, Vorotyntsev M. Bromate electroreduction from sulfuric acid solution at rotating disk electrode: Experimental study. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
23
Konev DV, Antipov AE, Petrov MM, Shamraeva MA, Vorotyntsev MA. Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC″) reaction mechanism. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]  Open
24
Vorotyntsev MA, Antipov AE. Bromate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-diffusion transport for excess of bromate ions compared to protons. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
25
Antipov AE, Vorotyntsev MA. Bromate Anion Reduction at Rotating Disk Electrode in Steady State under Excess of Protons: Numerical Solution of the Convective Diffusion Equations at Equal Diffusion Coefficients of Components. RUSS J ELECTROCHEM+ 2018. [DOI: 10.1134/s1023193518010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
26
Vorotyntsev M, Antipov A. Bromate electroreduction from acidic solution at spherical microelectrode under steady-state conditions: Theory for the redox-mediator autocatalytic (EC″) mechanism. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
27
Antipov AE, Vorotyntsev MA. Generalized Nernst layer model for convective-diffusion transport. Numerical solution for bromide ion electroreduction on inactive rotating disk electrode under steady state conditions. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
28
Vorotyntsev MA, Antipov AE, Konev DV. Bromate anion reduction: novel autocatalytic (EC″) mechanism of electrochemical processes. Its implication for redox flow batteries of high energy and power densities. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
29
Vorotyntsev MA, Antipov AE. Mediator reduction of bromate anion at rotating disk electrode under steady-state conditions for high current densities. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517090178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
30
Vorotyntsev MA, Antipov AE. Bromate electroreduction from acidic solution at rotating disc electrode. Theory of steady-state convective-diffusion transport. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
31
Holzapfel M, Wilde D, Hupbauer C, Ahlbrecht K, Berger T. Medium-temperature molten sodium batteries with aqueous bromine and iodine cathodes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
32
Antipov AE, Vorotyntsev MA, Tolmachev YV, Antipov EM, Aldoshin SM. Generalization of the Nernst layer model to take into account the difference in diffusivity between the components of the system in bromate reduction in steady-state one-dimensional mode: Current limiting by proton transport. DOKLADY PHYSICAL CHEMISTRY 2016. [DOI: 10.1134/s001250161611004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
33
One-dimensional model of steady-state discharge process in hydrogen-bromate flow battery. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
34
Antipov AE, Vorotyntsev MA. Electroreduction of bromate anion on inactive RDE under steady-state conditions: Numerical study of ion transport processes and comproportionation reaction. RUSS J ELECTROCHEM+ 2016. [DOI: 10.1134/s1023193516100037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
35
Vorotyntsev MA, Antipov A. Generalized Nernst Layer Model: Application to Bromate Anion Electroreduction and Theory for the Stationary 1D Regime of Proton Transport Limitations. ChemElectroChem 2016. [DOI: 10.1002/celc.201600422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
36
Vorotyntsev MA, Antipov AE. Reduction of bromate anion via autocatalytic redox-mediation by Br 2 /Br − redox couple. Theory for stationary 1D regime. Effect of different Nernst layer thicknesses for reactants. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
37
Vorotyntsev MA, Antipov AE. Bromate electroreduction via autocatalytic redox mediation: EC” mechanism. Theory for stationary 1D regime. Current limitation by proton transport. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
38
Vorotyntsev MA, Antipov AE, Tolmachev YV, Antipov EM, Aldoshin SM. Electroreduction of bromate anion in acidic solutions at the inactive rotating disc electrode under steady-state conditions: Numerical modeling of the process with bromate anions being in excess compared to protons. DOKLADY CHEMISTRY 2016. [DOI: 10.1134/s0012500816050025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
39
Vorotyntsev MA, Konev DV, Tolmachev YV. Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA