1
|
Qiu Q, Long J, Yao P, Wang J, Li X, Pan ZZ, Zhao Y, Li Y. Cathode electrocatalyst in aprotic lithium oxygen (Li-O2) battery: A literature survey. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
2
|
Ozturk T, Cengiz EC, Demir-Cakan R, Erbil HY. Li–S batteries: effect of uniaxial compression on the electrical conductivity and electrochemical performance of graphene aerogel cathodes. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Mao D, Yi S, He Z, Zhu Q. Non-woven fabrics derived binder-free gas diffusion catalyst cathode for long cycle Li-O2 batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Yuan S, Gao Q, Ke C, Zuo T, Hou J, Zhang J. Mesoporous Carbon Materials for Electrochemical Energy Storage and Conversion. ChemElectroChem 2022. [DOI: 10.1002/celc.202101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shu Yuan
- Institute of Fuel Cells, School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Qian Gao
- Institute of Fuel Cells, School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Changchun Ke
- Institute of Fuel Cells, School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Tao Zuo
- CEMT Co Ltd 107 Changjiang Road Jiashan 314100 P. R. China
| | - Junbo Hou
- Institute of Fuel Cells, School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
| |
Collapse
|
5
|
Simultaneous synthesis of graphite-like and amorphous carbon materials via solution plasma and their evaluation as additive materials for cathode in Li-O 2 battery. Sci Rep 2021; 11:6261. [PMID: 33737609 PMCID: PMC7973806 DOI: 10.1038/s41598-021-85392-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Cathode materials are essential for enhancing electrocatalytic activity in energy-conversion devices. Carbon is one of the most suitable cathodic materials for Li–O2 batteries owing to its chemical and thermal stability. Carbon materials synthesized from tributyl borate (TBB) using a nonthermal solution plasma method were characterized using x‐ray diffraction, Raman, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, and x-ray photoelectron spectroscopy and were evaluated as additive materials for cathodes in a Li–O2 battery. Two separate carbon materials were formed at the same time, a carbon dispersed in solution and a carbon precipitate at the bottom of the reactor, which had amorphous and graphite-like structures, respectively. The amorphous carbon contained boron and tungsten carbide, and the graphite-like carbon had more defects and electronic conductivity. The crystallinity and density of defects in the graphite-like carbon could be tuned by changing the SP operating frequency. The Li–O2 battery with the amorphous carbon containing boron and tungsten carbide was found to have a high capacity, while the one with the graphite-like carbon showed an affinity for the formation of Li2O2, which is the desired discharge product, and exhibited high cycling performance.
Collapse
|
6
|
Cui R, Xiao Y, Li C, Han Y, Lv G, Zhang Z. Polyaniline/reduced graphene oxide foams as metal-free cathodes for stable lithium-oxygen batteries. NANOTECHNOLOGY 2020; 31:445402. [PMID: 32668419 DOI: 10.1088/1361-6528/aba658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lithium-oxygen batteries (LOBs) are considered as next-generation energy storage devices owing to their high-energy densities, yet they generally suffer from low actual specific capacity and poor cycle performance. To solve these issues, a range of electrocatalysts have been introduced in the cathode to reduce the overpotential during charge/discharge cycles and minimize unwanted side reactions. Due to relative high costs and limited reserves of noble metals and their compounds, it is important to develop low-cost and efficient metal-free electrocatalysts. Here, we report a simple method to prepare three-dimensional porous polyaniline (PANI)/reduced graphene oxide foams (PPGFs) with different PANI contents via a two-step self-assembly process. When these foams are tested as the cathode in LOBs, the device using the PPGF with 50% PANI content exhibits a discharge capacity up to 36 010 mAh g-1 and an excellent cycling stability (260 cycles at 1000 mAh g-1 and 500 cycles at 500 mAh g-1), provid ing new insights into the design of next-generation metal-free cathodes for LOBs.
Collapse
Affiliation(s)
- Ranran Cui
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
7
|
Wang H, Shao Y, Mei S, Lu Y, Zhang M, Sun JK, Matyjaszewski K, Antonietti M, Yuan J. Polymer-Derived Heteroatom-Doped Porous Carbon Materials. Chem Rev 2020; 120:9363-9419. [DOI: 10.1021/acs.chemrev.0c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hong Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yue Shao
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Shilin Mei
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Miao Zhang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Jian-ke Sun
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14469 Potsdam, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
8
|
Gottlieb E, Matyjaszewski K, Kowalewski T. Polymer-Based Synthetic Routes to Carbon-Based Metal-Free Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804626. [PMID: 30368931 DOI: 10.1002/adma.201804626] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Carbons are increasingly important as possible alternatives to expensive metal catalysts owing to the wide range of chemical properties they can exhibit and the growing set of synthetic routes available to produce them. This progress report discusses the process of making catalytic carbons from polymeric precursors, focusing on mechanisms of carbonization and how the polymer structures and synthetic procedures affect the resulting carbons. In considering what is necessary to move laboratory catalytic carbons to industrial and commercial applications, the cost and complexity to produce them are a considerable challenge to overcome. Industrially produced carbons are typically made from biopolymers such as lignin while many of the catalytic carbons studied in literature are from synthetic polymers. Thus, studying polymer-derived carbons can provide insights into the carbonization process and the properties of catalytic carbons, which can subsequently be translated to improve biopolymer-derived carbons in an economical way. Aspects of polymer carbonization discussed include carbonization mechanisms, effects of crosslinkers, polymer microstructure, heteroatom control, and effects of nanostructuring.
Collapse
Affiliation(s)
- Eric Gottlieb
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
9
|
Hu C, Xiao Y, Zou Y, Dai L. Carbon-Based Metal-Free Electrocatalysis for Energy Conversion, Energy Storage, and Environmental Protection. ELECTROCHEM ENERGY R 2018. [DOI: 10.1007/s41918-018-0003-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Carbon-based metal-free catalysts possess desirable properties such as high earth abundance, low cost, high electrical conductivity, structural tunability, good selectivity, strong stability in acidic/alkaline conditions, and environmental friendliness. Because of these properties, these catalysts have recently received increasing attention in energy and environmental applications. Subsequently, various carbon-based electrocatalysts have been developed to replace noble metal catalysts for low-cost renewable generation and storage of clean energy and environmental protection through metal-free electrocatalysis. This article provides an up-to-date review of this rapidly developing field by critically assessing recent advances in the mechanistic understanding, structure design, and material/device fabrication of metal-free carbon-based electrocatalysts for clean energy conversion/storage and environmental protection, along with discussions on current challenges and perspectives.
Graphical Abstract
Collapse
|