1
|
Putjuso T, Putjuso S, Karaphun A, Swatsitang E. Influence of Li concentration on structural, morphological and electrochemical properties of anatase-TiO 2 nanoparticles. Sci Rep 2024; 14:11200. [PMID: 38755425 PMCID: PMC11098815 DOI: 10.1038/s41598-024-61985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Lithium-doped anatase-TiO2 nanoparticles (LixTi1-xO2 NPs, x = 0, 0.05, 0.10, 0.15 and 0.20) could be synthesized by a simple sol-gel process. X-ray diffraction (XRD) results displayed the tetragonal (space group: I41/amd) of polycrystalline TiO2 anatase phase. The spectroscopy results of Raman and FT-IR confirmed the anatase phase of TiO2 through the specific modes of metal oxides vibration in the crystalline TiO2. Surfaces micrographs by scanning electron microscope (SEM) of agglomerated LixTi1-xO2 NPs showed a spongy like morphology. Transmission electron microscope (TEM) illustrated a cuboidal shape of dispersed NPs with particle size distributed in a narrow range 5-10 nm. Bruanauer Emmett-Teller (BET) results showed the increased surface area of LixTi1-xO2 NPs with increasing Li content. LixTi1-xO2 NPs (x = 0.05-0.20) working electrodes illustrated a pseudocapacitive behavior with excellent electrochemical properties through the whole cycles of GCD test. Interestingly, Li0.1Ti0.9O2 NPs electrode illustrated a high performance in terms of maximum specific capacitance 822 F g-1 at 1.5 A g-1 in 0.5 M Li2SO4 electrolyte, with excellent capacitive retention 92.6% after 5000 cycles GCD test.
Collapse
Affiliation(s)
- Thanin Putjuso
- Department of General Education (Physics and Mathematics), Faculty of Liberal Arts, Rajamangala University of Technology Rattanakosin, Wang Klai Kangwon Campus, Hua Hin , Prachuap Khiri Khan, 77110, Thailand
| | - Sasitorn Putjuso
- Department of General Education (Physics and Mathematics), Faculty of Liberal Arts, Rajamangala University of Technology Rattanakosin, Wang Klai Kangwon Campus, Hua Hin , Prachuap Khiri Khan, 77110, Thailand
| | - Attaphol Karaphun
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ekaphan Swatsitang
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Qiu F, Wang L, Li H, Pan Y, Song H, Chen J, Fan Y, Zhang S. Electrochemically enhanced activation of Co 3O 4/TiO 2 nanotube array anode for persulfate toward high catalytic activity, low energy consumption, and long lifespan performance. J Colloid Interface Sci 2024; 655:594-610. [PMID: 37956547 DOI: 10.1016/j.jcis.2023.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Advanced oxidation processes (AOPs) can directly degrade and mineralize organic pollutants (OPs) in water by generating reactive oxygen species with strong oxidizing ability. The development of advanced electrode materials with high catalytic performance, low energy consumption, no secondary pollution, and long lifespan has become a challenge that must be addressed in this field. A heterojunction catalyst loaded with Co3O4 on TDNAs (Co3O4/RTDNAs) was designed and constructed by a simple and efficient pyrolysis (Co3O4/TDNAs) and electrochemical reduction. Co3O4 can be uniformly distributed on the inner wall and surface of the TiO2 nanotubes, enhancing the specific surface area while forming a tight conductive interface with TiO2. This facilitates rapid transmission of electrons, thereby assisting Co3O4 in quickly activating PS to form reactive oxygen species. The Ti3+ and Ov generated in Co3O4/RTDNAs can significantly improve the electrocatalytic degradation of OPs. Also, the interface formed by Co3O4 and RTDNAs will effectively suppress Co2+ leakage, thereby reducing the risk of secondary pollution. When the reaction conditions were 1 mM PMS (PDS) and a current density of 5 mA/cm2 in the EA-PMS (PDS)/Co3O4/RTDNA system, 30 mg/L TC can achieve 83.24 % (81.89 %) removal in 120 min, with very low cobalt ion leaching, while the energy consumption was reduced significantly. Therefore, EA-PS/Co3O4/RTDNA system has strong stability and a high potential for treating the OPs in AOPs.
Collapse
Affiliation(s)
- Fan Qiu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Luyao Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Hongxiang Li
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China
| | - Yanan Pan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Haiou Song
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China.
| | - Junjie Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yang Fan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
3
|
Raj C, Srimurugan V, Sundheep R, Neelakantan L. Enhanced electrochemical capacitance of a surfactant modified hierarchical Co(OH)2/TiO2 nanotube array for supercapacitor applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Tan X, Wang R, Liu X, Wang W, Cao L, Dong B. Mn 3-x Fe x O 4 Hollow Nanostructures for High-Performance Asymmetric Supercapacitor Applications. Chemistry 2021; 27:9398-9405. [PMID: 33908095 DOI: 10.1002/chem.202100768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 11/10/2022]
Abstract
Design of hollow nanostructure and controllable phase of mixed metal oxides for improving performance in supercapacitor applications is highly desirable. Here we demonstrate the rational design and synthesis of Mn3-x Fex O4 hollow nanostructures for supercapacitor applications. Owing to high porosity and the specific surface area that provides more active sites for electrochemical reactions, the electrochemical performance of Mn3-x Fex O4 hollow nanostructure substantially enhanced comparing with pristine Mn3 O4 . Particularly, in 1.0 M KOH electrolyte, Mn0.16 Fe2.84 O4 with a typical diameter of 20 nm exhibits excellent specific capacitance of 2675, 2320, 1662, 987 F g-1 at current densities of 1, 2, 5, 10 A g-1 , respectively, which is significantly superior to those of other transition metal oxides. Besides, an asymmetric supercapacitor is assembled by using Mn0.16 Fe2.84 O4 and activated carbon as a positive and a negative electrode, respectively. Electrochemical results indicate a high energy density of 42 Wh kg-1 at a power density of 0.75 kW kg-1 , which makes this hollow nanostructure a highly promising electrode for achieving high-performance next-generation supercapacitors.
Collapse
Affiliation(s)
- Xueling Tan
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, Shandong, P. R. China
| | - Ruonan Wang
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, Shandong, P. R. China
| | - Xiaofei Liu
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, Shandong, P. R. China
| | - Wei Wang
- Aramco Research Center Boston, Aramco Services Company, 02139, Cambridge, MA, USA
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, Shandong, P. R. China
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, Shandong, P. R. China
| |
Collapse
|
5
|
Sarraf M, Nasiri-Tabrizi B, Yeong CH, Madaah Hosseini HR, Saber-Samandari S, Basirun WJ, Tsuzuki T. Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future? CERAMICS INTERNATIONAL 2021; 47:2917-2948. [PMID: 32994658 PMCID: PMC7513735 DOI: 10.1016/j.ceramint.2020.09.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/12/2023]
Abstract
Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide nanotubes (MONs) and their potential applications, especially in biomedical applications are still in the early stages of development. This review aims to establish a credible platform for the current and future roles of MONs in nanomedicine, particularly in advanced orthopedic implants. We first introduce the concept of MONs and then discuss the preparation strategies. This is followed by a review of the recent advancement of MONs in biomedical applications, including mineralization abilities, biocompatibility, antibacterial activity, cell culture, and animal testing, as well as clinical possibilities. To conclude, we propose that the combination of nanotubular surface modification with incorporating sensor allows clinicians to precisely record patient data as a critical contributor to evidence-based medicine.
Collapse
Key Words
- ALP, Alkaline Phosphatase
- APH, Anodization-Cyclic Precalcification-Heat Treatment
- Ag2O NPs, Silver Oxide Nanoparticles
- AgNPs, Silver Nanoparticles
- Anodization
- BIC, Bone-Implant Contact
- Bioassays
- CAGR, Compound Annual Growth Rate
- CT, Computed Tomography
- DMF, Dimethylformamide
- DMSO, Dimethyl Sulfoxide
- DRI, Drug-Releasing Implants
- E. Coli, Escherichia Coli
- ECs, Endothelial Cells
- EG, Ethylene Glycol
- Electrochemistry
- FA, Formamide
- Fe2+, Ferrous Ion
- Fe3+, Ferric Ion
- Fe3O4, Magnetite
- GEP, Gene Expression Programming
- GO, Graphene Oxide
- HA, Hydroxyapatite
- HObs, Human Osteoblasts
- HfO2 NTs, Hafnium Oxide Nanotubes
- IMCs, Intermetallic Compounds
- LEDs, Light emitting diodes
- MEMS, Microelectromechanical Systems
- MONs, Mixed Oxide Nanotubes
- MOPSO, Multi-Objective Particle Swarm Optimization
- MSCs, Mesenchymal Stem Cells
- Mixed oxide nanotubes
- NMF, N-methylformamide
- Nanomedicine
- OPC1, Osteo-Precursor Cell Line
- PSIs, Patient-Specific Implants
- PVD, Physical Vapor Deposition
- RF, Radio-Frequency
- ROS, Radical Oxygen Species
- S. aureus, Staphylococcus Aureus
- S. epidermidis, Staphylococcus Epidermidis
- SBF, Simulated Body Fluid
- TiO2 NTs, Titanium Dioxide Nanotubes
- V2O5, Vanadium Pentoxide
- VSMCs, Vascular Smooth Muscle Cells
- XPS, X-ray Photoelectron Spectroscopy
- ZrO2 NTs, Zirconium Dioxide Nanotubes
- hASCs, Human Adipose-Derived Stem Cells
Collapse
Affiliation(s)
- Masoud Sarraf
- Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | - Bahman Nasiri-Tabrizi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Hamid Reza Madaah Hosseini
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | | | - Wan Jefrey Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Takuya Tsuzuki
- Research School of Electrical Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, 2601, Australia
| |
Collapse
|
6
|
Nath NCD, Lee JJ. Intercalation-type electrodes of copper–cobalt oxides for high-energy-density supercapacitors. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
|
8
|
Liu S, Deng T, Hu X, Shi X, Wang H, Qin T, Zhang X, Qi J, Zhang W, Zheng W. Increasing surface active Co2+ sites of MOF-derived Co3O4 for enhanced supercapacitive performance via NaBH4 reduction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Liu J, Xu J, Wang Y, Cui J, Tan HH, Wu Y. Electrochemical hydrogenated TiO2nanotube arrays decorated with 3D cotton-like porous MnO2enables superior supercapacitive performance. RSC Adv 2017. [DOI: 10.1039/c7ra04883a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly conducting TiO2nanotube arrays (EH-TNTAs) decorated with unique 3D cotton-like porous MnO2enables superior supercapacitive performance.
Collapse
Affiliation(s)
- Jiaqin Liu
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province
| | - Juan Xu
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
- School of Chemistry and Chemical Engineering
| | - Yan Wang
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province
| | - Jiewu Cui
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering
- Research School of Physics and Engineering
- The Australian National University
- Canberra
- Australia
| | - Yucheng Wu
- School of Materials Science and Engineering
- Hefei University of Technology
- Hefei 230009
- China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province
| |
Collapse
|