1
|
Mukhopadhyay S, Kottaichamy AR, Devendrachari MC, Mendhe RM, Nimbegondi Kotresh HM, Vinod CP, Ottakam Thotiyl M. Electrochemical energy storage in an organic supercapacitor via a non-electrochemical proton charge assembly. Chem Sci 2024; 15:1726-1735. [PMID: 38303938 PMCID: PMC10829031 DOI: 10.1039/d3sc05639b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Contrary to conventional beliefs, we show how a functional ligand that does not exhibit any redox activity elevates the charge storage capability of an electric double layer via a proton charge assembly. Compared to an unsubstituted ligand, a non-redox active carboxy ligand demonstrated nearly a 4-fold increase in charge storage, impressive capacitive retention even at a rate of 900C, and approximately a 2-fold decrease in leakage currents with an enhancement in energy density up to approximately 70% via a non-electrochemical route of proton charge assembly. Generalizability of these findings is presented with various non-redox active functional units that can undergo proton charge assembly in the ligand. This demonstration of non-redox active functional units enriching supercapacitive charge storage via proton charge assembly contributes to the rational design of ligands for energy storage applications.
Collapse
Affiliation(s)
- Sanchayita Mukhopadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Pune Dr Homi Bhabha Road Pune 411008 India
| | - Alagar Raja Kottaichamy
- Department of Chemistry, Indian Institute of Science Education and Research, Pune Dr Homi Bhabha Road Pune 411008 India
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | | | - Rahul Mahadeo Mendhe
- Department of Chemistry, Indian Institute of Science Education and Research, Pune Dr Homi Bhabha Road Pune 411008 India
| | | | | | - Musthafa Ottakam Thotiyl
- Department of Chemistry, Indian Institute of Science Education and Research, Pune Dr Homi Bhabha Road Pune 411008 India
| |
Collapse
|
2
|
Shanmuganathan R, Sathiyavimal S, Hoang Le Q, M Al-Ansari M, A Al-Humaid L, Jhanani GK, Lee J, Barathi S. Green synthesized Cobalt oxide nanoparticles using Curcuma longa for anti-oxidant, antimicrobial, dye degradation and anti-cancer property. ENVIRONMENTAL RESEARCH 2023; 236:116747. [PMID: 37500035 DOI: 10.1016/j.envres.2023.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
In the present study, cobalt oxide nanoparticles have been synthesized using the root extract of Curcuma longa in a manner that is both environmentally friendly and economical. Initially, the synthesized nanoparticles were characterized using a UV-Vis spectroscopy analysis, in which plasma resonance at 345 nm was observed, which confirmed that CL-Cobalt oxide nanoparticles were synthesized. While FTIR analysis showed a peak at 597.37 cm-1 indicating Co-O stretching vibration. In addition, DLS, SEM and XRD analyses confirmed the synthesis of polydispersed (average size distribution of 97.5 ± 35.1 nm), cubic phase structure, and spherical-shaped CL-Cobalt oxide nanoparticles. CL-Cobalt oxide nanoparticles synthesized from green materials showed antioxidant and antimicrobial properties. CL-Cobalt oxide nanoparticles exhibited antibacterial activity against Gram negative (Klebsiella pneumoniae and Escherichia coli) and Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus), while CL-Cobalt oxide nanoparticles additionally displayed significant antifungal activity against Aspergillus niger. CL-Cobalt oxide also showed application in a bioremediation perspective by showing strong photocatalytic degradation of methyl red, methyl orange and methyl blue dye. In addition, CL-Cobalt oxide also demonstrated anticancer activity against MDA-MB-468 cancer cell lines with an IC50 value of 150.8 μg/ml. Therefore, this is the first and foremost report on CL-Cobalt oxide nanoparticles synthesized using Curcuma longa showing antioxidant, antibacterial, antifungal, dye degradation and anticancer applications.
Collapse
Affiliation(s)
- Rajasree Shanmuganathan
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| | - Selvam Sathiyavimal
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Latifah A Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - G K Jhanani
- Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
3
|
Hu H, Wu S, Wang C, Wang X, Shi X. Electrochemical behaviour of cellulose/reduced graphene oxide/carbon fiber paper electrodes towards the highly sensitive detection of amitrole. RSC Adv 2023; 13:1867-1876. [PMID: 36712608 PMCID: PMC9830654 DOI: 10.1039/d2ra07662d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Amitrole is a non-selective triazole herbicide that is widespread used to control a variety of weeds in agriculture, but it may pollute the environment and do harm to organisms. Thus, it is of critical significance to enlist a low-cost, sensitive, stable and renewable method to detect amitrole. In this paper, electrochemical experiments were carried out using carbon fibers/reduced graphene oxide/cellulose paper electrodes, which demonstrated good electrocatalytic performance for amitrole detection. The electrochemical process of amitrole on the surface of the reduced paper electrode was a quasi-reversible reaction controlled by diffusion. Cyclic voltammetry and the amperometric i-t curve method were used for amitrole determination at a micro molar level and higher-concentration range with the following characteristics: linear range 5 × 10-6 mol L-1 to 3 × 10-5 mol L-1, detection limit 2.44 × 10-7 mol L-1. In addition, the relative standard deviation of repeatability is 3.74% and of stability is 4.68%. The reduced paper electrode with high sensitivity, low detection limit, good stability and repeatability provides novel ideas for on-site amitrole detection in food and agriculture.
Collapse
Affiliation(s)
- Hui Hu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan UniversityWuhan 430079China
| | - Si Wu
- College of Resources and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and TechnologyWuhan 430081China
| | - Cheng Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of TechnologyGuangzhou 510640China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of TechnologyGuangzhou 510640China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan UniversityWuhan 430079China
| |
Collapse
|
4
|
Ilager D, Shetti NP, Reddy KR, Tuwar SM, Aminabhavi TM. Nanostructured graphitic carbon nitride (g-C 3N 4)-CTAB modified electrode for the highly sensitive detection of amino-triazole and linuron herbicides. ENVIRONMENTAL RESEARCH 2022; 204:111856. [PMID: 34389349 DOI: 10.1016/j.envres.2021.111856] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
In agro-areas, linuron (LNR) and amino-triazole (ATZ) are the widely used herbicides to protect crops, but their widespread use pollutes the environment, especially when these are mixed with water or soil. In efforts to address these environmental issues and to detect trace quantities of the herbicides, a graphitic carbon nitride (g-C3N4) with cetyltrimethylammonium bromide (CTAB) modified carbon paste electrode (g-C3N4-CTAB/CPE) was developed and used for the detection of LNR and ATZ. Materials were characterized by XRD, TEM and AFM techniques. The effect of pH on electro-oxidation (under optimized conditions) showed the maximum peak current at pH of 4.2 for AMT and pH 6.0 for LNR. The electro-kinetic and thermodynamic parameters of LNR and ATZ were determined. Additional experiments were performed for the trace level detection of ATZ and LNR using the square wave voltammetric technique. Concentrations were varied linearly in the range of 3.0 × 10-7 M to 4.5 × 10-5 M for ATZ with a detection limit of 6.41 × 10-8 M, and 1.2 × 10-7 M to 3.0 × 10-4 M for LNR with a detection limit of 2.47 × 10-8 M. The developed novel sensor was effective for trace level detection of LNR and ATZ in water and soil samples.
Collapse
Affiliation(s)
- Davalasab Ilager
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi, 580 027, Karnataka, India
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Suresh M Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad, 580 001, Karnataka, India
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| |
Collapse
|
5
|
Prabhu K, Malode SJ, Shetti NP, Kulkarni RM. Analysis of herbicide and its applications through a sensitive electrochemical technique based on MWCNTs/ZnO/CPE fabricated sensor. CHEMOSPHERE 2022; 287:132086. [PMID: 34523434 DOI: 10.1016/j.chemosphere.2021.132086] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical performance of linuron (LNR) was studied by fabricating the carbon paste electrode (CPE) using multiwalled carbon nanotubes (MWCNTs) along with zinc oxide (ZnO) nanoparticles (MWCNTs/ZnO/CPE). The influence of electro-kinetic specifications involving steady heterogeneous rate, pH, sweep rate, temperature effect, transfer coefficient, accumulation time, activation energy, as well as the total number of protons and electrons participating in electro-oxidation of LNR has been established using voltammetric techniques like cyclic voltammetry (CV) and square wave voltammetry (SWV). These techniques were applied to investigate LNR in real samples such as soil including water samples. Over the 0.02 μM-0.34 μM ranges, a linear relationship was confirmed along with the limit of detection and quantification (LOD and LOQ) of the LNR. The synthesized ZnO nanoparticles were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) analysis. The MWCNTs/ZnO/CPE sensor was considered sensitive for LNR detection because the sensor exhibited enhanced catalytic qualities with peak current in the involvement of 0.2 M phosphate buffer solution (PBS) of pH 6.0, attributed to the ultimate sensing performance of the sensor.
Collapse
Affiliation(s)
- Keerthi Prabhu
- Centre for Electrochemical Science and Materials, Department of Engineering Chemistry, K.L.E. Institute of Technology, Hubballi, 580027, Karnataka, India
| | - Shweta J Malode
- Centre for Electrochemical Science and Materials, Department of Engineering Chemistry, K.L.E. Institute of Technology, Hubballi, 580027, Karnataka, India.
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India.
| | - Raviraj M Kulkarni
- Department of Chemistry, K. L. S. Gogte Institute of Technology (Autonomous), affiliated to Visvesvaraya Technological University Belagavi-590008, Karnataka, India
| |
Collapse
|
6
|
Chundu P, Dube E, Zinyama NP, Moyo M, Shumba M. Poly-Phthalocyanine-Doped Graphene Oxide Nanosheet Conjugates for Electrocatalytic Oxidation of Drug Residues. Front Chem 2021; 9:633547. [PMID: 34950634 PMCID: PMC8688842 DOI: 10.3389/fchem.2021.633547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Donor and acceptor phthalocyanine molecules were copolymerized and linked to graphene oxide nanosheets through amidation to yield electrocatalytic platforms on glassy carbon electrodes. The platforms were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, UV/Vis spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The fabricated electrochemical catalytic surfaces were then evaluated toward electrocatalytic detection of ascorbic acid and tryptophan. These were characterized by a wide linear dynamic range and low limits of detection and quantification of 2.13 and 7.12 µM for ascorbic acid and 1.65 and 5.5 µM for tryptophan, respectively. The catalytic rate constant was 1.86 × 104 and 1.51 × 104 M−1s−1 for ascorbic acid and tryptophan, respectively. The Gibbs energy for catalytic reactions was −17.45 and −14.83 kJ mol−1 depicting a spontaneous reaction on the electrode surface. The sensor platform showed an impressive recovery when applied in real samples such as fresh cow milk, in the range 91.71–106.73% for both samples. The developed sensor therefore shows high potential for applicability for minute quantities of the analytes in real biological samples.
Collapse
Affiliation(s)
- Prince Chundu
- Department of Chemical Sciences, Midlands State University, Gweru, Zimbabwe
| | - Edith Dube
- Department of Chemical Sciences, Midlands State University, Gweru, Zimbabwe
| | | | - Mambo Moyo
- Department of Chemical Sciences, Midlands State University, Gweru, Zimbabwe
| | - Munyaradzi Shumba
- Department of Chemical Sciences, Midlands State University, Gweru, Zimbabwe
| |
Collapse
|
7
|
Robin Nxele S, Nkhahle R, Nyokong T. The composites of asymmetric Co phthalocyanines-graphitic carbon nitride quantum dots-aptamer as specific electrochemical sensors for the detection of prostate specific antigen: Effects of ring substituents. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Çakır O, Bakhshpour M, Göktürk I, Yılmaz F, Baysal Z. Sensitive and selective detection of amitrole based on molecularly imprinted nanosensor. J Mol Recognit 2021; 34:e2929. [PMID: 34378825 DOI: 10.1002/jmr.2929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022]
Abstract
SPR sensor used for amitrole detection was prepared without using any modification. Molecularly imprinted SPR sensor enabled high selectivity for amitrole pesticide. Amino acid-based functional monomer MATrp was integrated as a recognition element. Tailor-made SPR sensor enables real-time monitoring of amitrole pesticide. Synthetic recognition sites provided by MATrp were prepared without labeling.
Collapse
Affiliation(s)
- Oğuz Çakır
- Science and Technology Application and Research Center, Dicle University, Diyarbakır, Turkey
| | | | - Ilgım Göktürk
- Department of Chemistry, Hacettepe University, Beytepe, Turkey
| | - Fatma Yılmaz
- Department of Chemistry Technology, Bolu Abant Izzet Baysal University, Gerede, Turkey
| | - Zübeyde Baysal
- Faculty of Science, Department of Chemistry, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
9
|
Graphene-based nanocomposites as sensing elements for the electrochemical detection of pesticides: a review. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04990-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Li Y, Ding Z, Bao Y, Han K, Li G. Electrochemiluminescence Determination of a Specific Sequence of the BCR/ABL Gene Related to Chronic Myelogenous Leukemia with a Ferrocene-Labelled Molecular Beacon and a Gold Nanoparticle (AuNP)-Luminol-Silica Nanocomposite. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1921785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yue Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Zhifang Ding
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Ying Bao
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Kexin Han
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Guixin Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| |
Collapse
|
11
|
Polyaniline-cobalt oxide nanofibers for simultaneous electrochemical determination of antimalarial drugs: Primaquine and proguanil. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Abstract
Phthalocyanines are aromatic or macrocyclic organic compounds and attract great attention due to their numerous properties. They have many high-tech applications in different areas of the industry such as dyestuffs, thermal printing screens, photovoltaic solar cells, membrane catalytic reactors, semiconductor materials and gas sensors. In the last decade, electrochemical sensor studies have accelerated with the catalytic lighting. It plays a dominant role in the development and implementation of new generation sensors. The aim of this study is to review the electrochemical methods based on electrode modification with phthalocyanines and to shed light on new application areas of phthalocyanines. The focal point was based on the sensor applications of phthalocyanines in the determination of drugs, pesticides, organic materials and metals etc. by electrochemical methods. Experimental conditions and some validation parameters of the sensor applications such as metal phthalocyanine types, indicator electrodes, selectivity, working ranges, detection limits, and analytical applications were discussed. Consequently, this is the first review dealing with the applications of phthalocyanines in electrochemical sensors for the sensitive determination of analytes in a variety of matrices.
Collapse
Affiliation(s)
- Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hulya Silah
- Department of Chemistry, Faculty of Art & Science, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
TiO2 Nanoparticles Decorated Graphene Nanoribbons for Voltammetric Determination of an Anti-HIV Drug Nevirapine. J CHEM-NY 2020. [DOI: 10.1155/2020/3932715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the present study, electrochemical behavior of nevirapine on a glassy carbon electrode (GCE) modified with TiO2 nanoparticles decorated graphene nanoribbons was investigated. Characterization of different components used for modifications was achieved using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The electrochemical behavior of nevirapine on the modified electrodes was examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and differential pulse voltammetry (DPV). A considerable oxidation potential decrease of +352 mV for nevirapine in 0.1 M phosphate-buffered saline (PBS), pH 11.0, was achieved due to synergy offered by graphene nanoribbons and TiO2 compared to graphene nanoribbons (+252 mV) and TiO2 (−37 mV), all with respect to the glassy carbon electrode. Under optimized conditions, DPV gave linear calibrations over the range of 0.020–0.14 µM. The detection limit was calculated as 0.043 µM. The developed sensor was used for determination of nevirapine in a pharmaceutical formulation successfully.
Collapse
|
14
|
Malode SJ, Keerthi Prabhu K, Shetti NP. Electrocatalytic behavior of a heterostructured nanocomposite sensor for aminotriazole. NEW J CHEM 2020. [DOI: 10.1039/d0nj04644b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterostructured nano-composite sensor for aminotriazole.
Collapse
Affiliation(s)
- Shweta J. Malode
- Center for Electrochemical Science & Materials
- Department of Engineering Chemistry
- K.L.E. Institute of Technology
- Hubballi 580027
- India
| | - K. Keerthi Prabhu
- Center for Electrochemical Science & Materials
- Department of Engineering Chemistry
- K.L.E. Institute of Technology
- Hubballi 580027
- India
| | - Nagaraj P. Shetti
- Center for Electrochemical Science & Materials
- Department of Engineering Chemistry
- K.L.E. Institute of Technology
- Hubballi 580027
- India
| |
Collapse
|
15
|
Chipeture AT, Apath D, Moyo M, Shumba M. Multiwalled carbon nanotubes decorated with bismuth (III) oxide for electrochemical detection of an antipyretic and analgesic drug paracetamol in biological samples. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0181-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|