1
|
Peng T, Zhang N, Yang Y, Zhang M, Luo R, Chen C, Lu Y, Luo Y. Crystal Facet Engineering of MXene-Derived TiN Nanoflakes as Efficient Bidirectional Electrocatalyst for Advanced Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202917. [PMID: 35988139 DOI: 10.1002/smll.202202917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The design of nanomaterials with grain orientation structure by crystal facet engineering is of great significance for boosting the catalytic ability and electrochemical properties, but the controllable synthesis is still a challenge. Here, TiN nanoflakes with exposed (001) facets are prepared using 2D Ti3 C2 MXene as the initial reactant and applied as a bidirectional electrocatalyst for the reduction and oxidation process in lithium-sulfur batteries (LSBs). The (001) facet-dominated TiN nanoflakes have a strong adsorption capacity for soluble lithium polysulfides (LiPSs). More importantly, theoretical calculations and experiment results confirm the (001) facet-dominated TiN nanoflakes catalyze the conversion of soluble LiPSs to Li2 S2 /Li2 S to induce the Li2 S uniform deposition in the discharge process and decrease the delithiation barrier of Li2 S in the charge process. Therefore, the excellent electrochemical properties of LSBs are achieved, which demonstrates a high discharge capacity of 949 mAh g-1 at 1 C and maintains high capacity reversibility with a decay rate of 0.033% per cycle after 800 cycles.
Collapse
Affiliation(s)
- Tao Peng
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Ning Zhang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Ya Yang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Mengjie Zhang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Rongjie Luo
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Chen Chen
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Yang Lu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Yongsong Luo
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| |
Collapse
|
2
|
Lu Y, Zhao M, Yang Y, Zhang M, Zhang N, Yan H, Peng T, Liu X, Luo Y. A conductive framework embedded with cobalt-doped vanadium nitride as an efficient polysulfide adsorber and convertor for advanced lithium-sulfur batteries. NANOSCALE HORIZONS 2022; 7:543-553. [PMID: 35293915 DOI: 10.1039/d1nh00512j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The industrialization and commercialization of Li-S batteries are greatly hindered by several defects such as the sluggish reaction kinetics, polysulfide shuttling and large volume expansion. Herein, we propose a heteroatom doping method to optimize the electronic structure for enhancing the adsorption and catalytic activity of VN that is in situ embedded into a spongy N-doped conductive framework, thus obtaining a Co-VN/NC multifunctional catalyst as an ideal sulfur host. The synthesized composite has both the unique structural advantages and the synergistic effect of cobalt, VN, and nitrogen-doped carbon (NC), which not only improve the polysulfide anchoring of the sulfur cathode but also boost the kinetics of polysulfide conversion. The density functional theory (DFT) calculations revealed that Co doping could enrich the d orbit electrons of VN for elevating the d band center, which improves its interaction with lithium polysulfides (LiPSs) and accelerates the interfacial electron transfer, simultaneously. As a result, the batteries present a high initial discharge capacity of 1521 mA h g-1 at 0.1 C, good rate performance, and excellent cycling performances (∼876 mA h g-1 at 0.5 C after 300 cycles and ∼490 mA h g-1 at 2 C after 1000 cycles, respectively), even with a high areal sulfur loading of 4.83 mg cm-2 (∼4.70 mA h cm-2 at 0.2 C after 100 cycles). This well-designed work provides a good strategy to develop effective polysulfide catalysis and further obtain high-performance host materials for Li-S batteries.
Collapse
Affiliation(s)
- Yang Lu
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Menglong Zhao
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Ya Yang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Mengjie Zhang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Ning Zhang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Hailong Yan
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Tao Peng
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yongsong Luo
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| |
Collapse
|
3
|
Ma Z, Sui W, Liu J, Wang W, Li S, Chen T, Yang G, Zhu K, Li Z. Pomelo peel-derived porous carbon as excellent LiPS anchor in lithium-sulfur batteries. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Self-induced matrix with Li-ion storage activity in ultrathin CuMnO 2 nanosheets electrode. J Colloid Interface Sci 2022; 606:1101-1110. [PMID: 34500149 DOI: 10.1016/j.jcis.2021.08.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
Conversion anode materials such as Mn3O4 draw much attention due to their considerable theoretical capacity for lithium-ion batteries (LIBs). However, poor conductivity, slow solid-state Li-ion diffusion, and huge volume expansion of the active materials during charge/discharge lead to unsatisfied electrochemical performance. Despite several strategies like nanocrystallization, fabricating hierarchical nanostructures, and introducing a matrix are valid to address these crucial issues, the achieved electrochemical performance still needs to be further enhanced. What is worse, the matrix with less or no Li-ion storage activity may lower the achieved capacity of the electrodes. Herein, ultra-thin CuMnO2 nanosheets with the thickness of 5-8 nm were evaluated for LIBs. The ultra-thin sheet-like nanostructure offers sufficient contact areas with electrolyte and shortens the Li-ion diffusion distance. Moreover, the in-situ generated Mn and Cu along with their oxides could play the role of matrix and conductive agent in turn at different stages, relieving the stress brought by volume expansion. Therefore, the as-prepared ultra-thin CuMnO2 nanosheets electrode displays a remarkable reversible capacity, long cycling stability, and outstanding rate capability (a reversible capacity of 1160.5 mAh g-1 at 0.1A g-1 was retained after 100 cycles with a capacity retention of 95.1 %, and 717.8 mAh g-1 at 2.0 A g-1 after 400 cycles).
Collapse
|
5
|
Zhang N, Zheng S, Zhao M, Lu Y, Cheng J, Yang Y, Peng T, Luo Y. TiN@C nanocages as multifunctional sulfur hosts for superior lithium-sulfur batteries. Dalton Trans 2021; 50:17120-17128. [PMID: 34779809 DOI: 10.1039/d1dt03108b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The lithium polysulfide (LiPS) shuttle effect and low redox kinetics are the key problems that hinder performance improvement and prevent achieving the commercial requirements for lithium-sulfur batteries (LSBs), and the reasonable construction of sulfur hosts is one effective strategy to relieve the polysulfide shuttle effect and improve redox kinetics. Herein, N-doped carbon nanocages decorated with homogeneously dispersed TiN nanoparticles (TiN@C NCs) as multifunctional sulfur hosts are designed for superior LSBs. Carbon nanocages provide space to mitigate volume expansion and provide additional physical adsorption to trap the LiPSs. Polar TiN nanoparticles not only exhibit the chemisorption capacity for LiPSs, but also catalyze and promote the conversion of long-chain LiPSs to Li2S2/Li2S in the reduction process as well as the decomposition of Li2S in the oxidation reaction, which significantly boosts electron/ion transport and decreases the potential barrier. Therefore, the S/TiN@C NC cathode has an excellent electrochemical capacity of 1485.7 mA h g-1 at 0.1 C. In particular, the cathode demonstrates high capacity reversibility after 500 cycles at 3 C with a retention of about 73.1%, which is equivalent to a slow capacity decay rate of 0.053% per cycle.
Collapse
Affiliation(s)
- Ning Zhang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Shuangshuang Zheng
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Menglong Zhao
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Yang Lu
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Jinbing Cheng
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Ya Yang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Tao Peng
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Yongsong Luo
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China. .,Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| |
Collapse
|
6
|
Zhao M, Lu Y, Yang Y, Zhang M, Yue Z, Zhang N, Peng T, Liu X, Luo Y. A vanadium-based oxide-nitride heterostructure as a multifunctional sulfur host for advanced Li-S batteries. NANOSCALE 2021; 13:13085-13094. [PMID: 34477792 DOI: 10.1039/d1nr03763c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The commercial application of lithium-sulfur (Li-S) batteries is obstructed by the inherent dissolution/shuttling of lithium polysulfides (LiPSs) in a sluggish redox reaction. Here, a heterophase V2O3-VN yolk-shell nanosphere encapsulated by a nitrogen-doped carbon layer has been designed to address the problems of the short cycle life and rapid capacity decay of Li-S batteries synchronously. The structural merits comprise efficient polysulfide anchoring (V2O3), rapid electron transfer (VN) and a reinforced frame (N-doped carbon). The assembled cathode based on the V2O3-VN@NC sulfur host delivered a high initial capacity of 1352 mA h g-1 at 0.1C with excellent rate performance (797 mA h g-1 at 2C) and favorable cycle stability with a low capacity-decay rate of only 0.038% per cycle over 800 cycles at 1C. Even with a high sulfur loading of 3.95 mg cm-2, an initial capacity of 954 mA h g-1 at 0.2C could be achieved, along with a good capacity retention of 75.1% after 150 cycles. Density functional theory computations demonstrated the crucial role of the V2O3-VN@NC heterostructure in the trapping-diffusion-conversion of polysulfides. This multi-functional cathode is very promising in realizing practically usable Li-S batteries owing to the simple process and the prominent rate and cyclic performances.
Collapse
Affiliation(s)
- Menglong Zhao
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|