1
|
Su H, Sun J, Wang C, Wang H. Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation. ULTRASONICS SONOCHEMISTRY 2024; 102:106734. [PMID: 38128391 PMCID: PMC10772823 DOI: 10.1016/j.ultsonch.2023.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
To improve the hydrogen precipitation performance on the surface of the catalytic layer of the proton exchange membrane (PEM) hydrogen cathode, ultrasonic vibration was employed to accelerate the detachment of hydrogen bubbles on the surface of the catalytic layer. Based on the energy and mechanical analyses of nano and microbubbles, the hydrogen bubble generation mechanism and the effect of temperature on bubble parameters during the evolution process when the ultrasonic field is coupled with the electric field are investigated. The nucleation frequency of the hydrogen bubbles, the relationship between the pressure and temperature and the operating temperature during the generation and detachment of bubbles as well as the detachment radius of bubbles under the action of the ultrasonic field are obtained. The effects of ultrasound and temperature on hydrogen production were verified by visual experiments. The results show that the operating temperature affects the nucleation, growth, and detachment processes of hydrogen bubbles. The effect of temperature on the nucleation frequency of bubbles mainly comes from the Gibbs free energy required for the electrolysis reaction. The bubble radius and growth rate are both related to the temperature to the power of one-third. Ultrasonic waves enhance the separation of hydrogen bubbles from the catalyst surface by acoustic cavitation and impact effects. An increase in the working temperature reduces the activation energy barriers to be overcome for the electrolysis reaction of water, which together with a decrease in the Gibbs free energy and the surface tension coefficient, leads to an increase in the nucleation frequency of the catalytic layer and a decrease in the radius of bubble detachment, and thus improves the hydrogen precipitation performance. Visualization experiments show that in actual PEM hydrogen production, ultrasonic intensification can promote the formation of nucleation sites. The ultrasonic induced fine bubble flow not only has a drag effect on the bubble, but also intensifies the polymerization growth of the bubble due to the impact of the fine bubble flow, thus speeding up the detachment of the bubble, shortening the covering time of the hydrogen bubble on the surface of the catalytic electrode, reducing the activation voltage loss and improve the hydrogen production efficiency of PEM. The experimental results show that when the electrolyte is 60°C, the maximum hydrogen production efficiency of ultrasound is increased by 7.34%, and the average hydrogen production efficiency is increased by 5.83%.
Collapse
Affiliation(s)
- Hongqian Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jindong Sun
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Caizhu Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Haofeng Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
2
|
Wang H, Zhang L, Zhang W, Sun S, Yao S. Highly Efficient Spatial Three-Level CoP@ZIF-8/pNF Based on Modified Porous NF as Dual Functional Electrocatalyst for Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1386. [PMID: 37110971 PMCID: PMC10142043 DOI: 10.3390/nano13081386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The development of non-noble metal catalysts for water electrolysis to product hydrogen meets the current strategic need for carbon peaking and carbon neutrality. However, complex preparation methods, low catalytic activity and high energy consumption still limit the application of these materials. Herein, in this work we prepared a three-level structured electrocatalyst of CoP@ZIF-8 growing on modified porous nickel foam (pNF) via the natural growing and phosphating process. In contrast to the common NF, the modified NF constructs a large number of micron-sized pores carrying the nanoscaled catalytic CoP@ZIF-8 on the millimeter-sized skeleton of bare NF, which significantly increases the specific surface area and catalyst load of the material. Thanks to the unique spatial three-level porous structure, electrochemical tests showed a low overpotential of 77 mV at 10 mA cm-2 for HER, and 226 mV at 10 mA cm-2 and 331 mV at 50 mA cm-2 for OER. The result obtained from testing the electrode's overall water splitting performance is also satisfactory, needing only 1.57 V at 10 mA cm-2. Additionally, this electrocatalyst showed great stability for more than 55 h when a 10 mA cm-2 constant current was applied to it. Based on the above characteristics, the present work demonstrates the promising application of this material to the electrolysis of water for the production of hydrogen and oxygen.
Collapse
Affiliation(s)
- Hongzhi Wang
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
| | - Limin Zhang
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
| | - Weiguo Zhang
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
- Institute of Sport and Health, Tianjin University of Sport, Tianjin 301617, China
| | | | - Suwei Yao
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
| |
Collapse
|
3
|
Chen Z, Dong S, Wang M, Hu Z, Chen H, Han Y, Yuan D. Construction of 3D Hierarchical Co 3O 4@CoFe-LDH Heterostructures with Effective Interfacial Charge Redistribution for Rechargeable Liquid/Solid Zn-Air Batteries. Inorg Chem 2023; 62:2826-2837. [PMID: 36710494 DOI: 10.1021/acs.inorgchem.2c04154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Constructing three-dimensional (3D) hierarchical heterostructures is an appealing but challenging strategy to improve the performance of catalysts for electrical energy devices. Here, an efficient and robust flexible self-supporting catalyst, interface coupling of ultrathin CoFe-LDH nanosheets and Co3O4 nanowire arrays on the carbon cloth (CC/Co3O4@CoFe-LDH), was proposed for boosting oxygen evolution reaction (OER) in rechargeable liquid/solid Zn-air batteries (ZABs). The strong interfacial interaction between the CoFe-LDH and Co3O4 heterostructures stimulated the charge redistribution in their coupling regions, which improved the electron conductivity and optimized the adsorption free energy of OER intermediates, ultimately boosting the intrinsic OER performance. Besides, the 3D hierarchical nanoarray structure facilitated the exposure of catalytically active centers and rapid electron/mass transfer during the OER process. As such, the CC/Co3O4@CoFe-LDH catalyst achieved excellent OER catalytic activity in alkaline medium, with a small overpotential of 237 mV at 10 mA cm-2, a low Tafel slope of 35.43 mV dec-1, and long-term durability of up to 48 h, significantly outperforming the commercial RuO2 catalyst. More impressively, the liquid and flexible solid-state ZABs assembled by the CC/Co3O4@CoFe-LDH hybrid catalyst as the OER catalyst presented a stable open circuit voltage, large power density, superb cycling life, and satisfactory flexibility, indicating great potential applications in energy technology. This work provides a good guidance for the development of advanced electrocatalysts with heterostructures and an in-depth understanding of electronic modulation at the heterogeneous interface.
Collapse
Affiliation(s)
- Zihao Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Senjie Dong
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Minghui Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Zunpeng Hu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Huiling Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Ye Han
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266071 Shandong, P. R. China
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071 Shandong, P. R. China
| |
Collapse
|
4
|
Yu X, Ren X, Yuan Z, Hou X, Yang T, Wang M. Ni 3 S 2 -Ni Hybrid Nanospheres with Intra-Core Void Structure Encapsulated in N-Doped Carbon Shells for Efficient and Stable K-ion Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205556. [PMID: 36587976 PMCID: PMC9929274 DOI: 10.1002/advs.202205556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Iron group metals chalcogenides, especially NiS, are promising candidates for K-ion battery anodes due to their high theoretical specific capacity and abundant reserves. However, the practical application of NiS-based anodes is hindered by slow electrochemical kinetics and unstable structure. Herein, a novel structure of Ni3 S2 -Ni hybrid nanosphere with intra-core voids encapsulated by N-doped carbon shells (Ni3 S2 -Ni@NC-AE) is constructed, based on the first electrodeposited NiS nanosphere particles, dopamine coating outer layer, oxygen-free annealing treatment to form Ni3 S2 -Ni core and N-doped carbon shell, and selective etching of the Ni phase to form intra-core void. The electron/K+ transport and K+ storage reaction kinetics are enhanced due to shortened diffusion pathways, increased active sites, generation of built-in electric field, high K+ adsorption energies, and large electronic density of states at Fermi energy level, resulting from the multi-structures synergistic effect of Ni3 S2 -Ni@NC-AE. Simultaneously, the volume expansion is alleviated due to the sufficient buffer space and strong chemical bonding provided by intra-core void and yolk-shell structure. Consequently, the Ni3 S2 -Ni@NC-AE exhibits excellent specific capacity (438 mAh g-1 at 0.1 A g-1 up to 150 cycles), outstanding rate performances, and ultra-stable long-cycle performance (176.4 mAh g-1 at 1 A g-1 up to 5000 cycles) for K-ion storage.
Collapse
Affiliation(s)
- Xiangtao Yu
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xiangyu Ren
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Zhangfu Yuan
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xinmei Hou
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Tao Yang
- Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijing100083P. R. China
| |
Collapse
|
5
|
3D-C-Fe4N@NiCu/Metallic Macroporous Frameworks for Binder-free Compact Hybrid Supercapacitors with High Areal Capacities. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Othman A, Bilan HK, Katz E, Smutok O. Highly Porous Gold Electrodes – Preparation and Characterization. ChemElectroChem 2022. [DOI: 10.1002/celc.202200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ali Othman
- Clarkson University Department of Chemistry and Biomolecular Science 13699 Potsdam UNITED STATES
| | - Hubert K. Bilan
- Clarkson University Department of Chemistry and Biomolecular Science 13699 Potsdam UNITED STATES
| | - Evgeny Katz
- Clarkson University Chemistry Department 8 Clarkson Avenue 13699-5810 Potsdam UNITED STATES
| | - Oleh Smutok
- Clarkson University Department of Chemistry and Biomolecule Science 13699 Potsdam UNITED STATES
| |
Collapse
|