Karki SB, Ramezanipour F. Enhancement of Electrocatalytic and Pseudocapacitive Properties as a Function of Structural Order in A
2Fe
2O
5 (A = Sr, Ba).
Molecules 2023;
28:5947. [PMID:
37630199 PMCID:
PMC10459622 DOI:
10.3390/molecules28165947]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Significant enhancements of electrocatalytic activities for both half-reactions of water-electrolysis, i.e., oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), as well as pseudocapacitive charge-storage properties are demonstrated upon changing the structural order in a perovskite-type system. The structural change is prompted by the increase in the ionic radius of the A-site ion in A2Fe2O5. The structure of Sr2Fe2O5 consists of alternating layers of FeO6 octahedra and FeO4 tetrahedra, whereas Ba2Fe2O5 comprises seven different coordination geometries for Fe. We note that the catalytically active metal, i.e., iron, and the oxygen stoichiometry are the same for both materials. Nevertheless, the change in the structural order results in significantly greater electrocatalytic activity of Ba2Fe2O5, manifested in smaller overpotentials, smaller charge-transfer resistance, greater electrocatalytic current, and faster reaction kinetics. In addition, this material shows significantly enhanced pseudocapacitive properties, with greater specific capacitance and energy density compared to Sr2Fe2O5. These findings indicate the important role of structural order in directing the electrochemical properties.
Collapse