1
|
Jang JY, Park MK, Lee CH, Lee H. The Multifaceted Role of Epithelial Membrane Protein 2 in Cancer: from Biomarker to Therapeutic Target. Biomol Ther (Seoul) 2024; 32:697-707. [PMID: 39428387 PMCID: PMC11535296 DOI: 10.4062/biomolther.2024.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Tetraspanin superfamily proteins not only facilitate the trafficking of specific proteins to distinct plasma membrane domains but also influence cell-to-cell and cell-extracellular matrix interactions. Among these proteins, Epithelial Membrane Protein 2 (EMP2), a member of the growth arrest-specific gene 3/peripheral myelin protein 22 (GAS3/PMP22) family, is known to affect key cellular processes. Recent studies have revealed that EMP2 modulates critical signaling pathways and interacts with adhesion molecules and growth factor receptors, underscoring its potential as a biomarker for cancer diagnosis and prognosis. These findings suggest that EMP2 expression patterns could provide valuable insights into tumorigenesis and metastasis. Moreover, EMP2 has emerged as a promising therapeutic target, with approaches aimed at inhibiting or modulating its activity showing potential to disrupt tumor growth and metastasis. This review provides a comprehensive overview of recent advances in understanding the multifaceted roles of EMP2 in cancer, with a focus on its underlying mechanisms and clinical significance.
Collapse
Affiliation(s)
- Ji Yun Jang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Biomedical Science, Hwasung Medi-Science University, Hwaseong 18274, Republic of Korea
| | - Chang Hoon Lee
- Pharmaceutical Biochemistry, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
2
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
- Logan Muzyka
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nicolas K Goff
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nikita Choudhary
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
3
|
Qin P, Li L, Zhao L, Bian P, Xiong Z. Constructing high-density tissue microarrays with a novel method and a self-made tissue-arraying instrument. Pathol Res Pract 2023; 245:154430. [PMID: 37060823 DOI: 10.1016/j.prp.2023.154430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
Tissue microarrays (TMAs), also called tissue chips, contain hundreds to thousands of tissue cores obtained from different tissue donor blocks. By using TMA technology, a molecular marker, such as protein, RNA or DNA, can be simultaneously examined in hundreds of different specimens under the same experimental conditions. A growing number of previous studies have introduced different methods for constructing TMAs. Many authors tried to use various methods to implant more tissue cores in a single recipient block, and most of these methods involved reducing the diameter of the tissue cores and/or the spacing between adjacent tissue cores. However, when creating TMAs, it is difficult to reduce the distance between tissue cores to zero except with extremely expensive automatic TMA arrayers. Here, we introduce a novel method to construct a high-density TMA that does not have spacing between the tissue cores. We also introduce a method for preparing a self-made tissue-arraying instrument. With this method and the tissue-arraying instrument, we successfully created a TMA containing 126 tissue cores that were 2 mm in diameter. H&E staining and immunohistochemical staining were performed on the sections cut from the TMA without any tissue spot loss. This method is easy to operate, and the materials for creating the tissue-arraying instrument are inexpensive and can be purchased anywhere. Therefore, this method can be applied in all laboratories.
Collapse
Affiliation(s)
- Ping Qin
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
| | - Liu Li
- Department of Gastroenterology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
| | - Li Zhao
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
| | - Piaopiao Bian
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
| | - Zhongtang Xiong
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China.
| |
Collapse
|
4
|
Exploring the Past, Present, and Future of Anti-Angiogenic Therapy in Glioblastoma. Cancers (Basel) 2023; 15:cancers15030830. [PMID: 36765787 PMCID: PMC9913517 DOI: 10.3390/cancers15030830] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma, a WHO grade IV astrocytoma, constitutes approximately half of malignant tumors of the central nervous system. Despite technological advancements and aggressive multimodal treatment, prognosis remains dismal. The highly vascularized nature of glioblastoma enables the tumor cells to grow and invade the surrounding tissue, and vascular endothelial growth factor-A (VEGF-A) is a critical mediator of this process. Therefore, over the past decade, angiogenesis, and more specifically, the VEGF signaling pathway, has emerged as a therapeutic target for glioblastoma therapy. This led to the FDA approval of bevacizumab, a monoclonal antibody designed against VEGF-A, for treatment of recurrent glioblastoma. Despite the promising preclinical data and its theoretical effectiveness, bevacizumab has failed to improve patients' overall survival. Furthermore, several other anti-angiogenic agents that target the VEGF signaling pathway have also not demonstrated survival improvement. This suggests the presence of other compensatory angiogenic signaling pathways that surpass the anti-angiogenic effects of these agents and facilitate vascularization despite ongoing VEGF signaling inhibition. Herein, we review the current state of anti-angiogenic agents, discuss potential mechanisms of anti-angiogenic resistance, and suggest potential avenues to increase the efficacy of this therapeutic approach.
Collapse
|
5
|
Mozaffari K, Mekonnen M, Harary M, Lum M, Aguirre B, Chandla A, Wadehra M, Yang I. Epithelial membrane protein 2 (EMP2): A systematic review of its implications in pathogenesis. Acta Histochem 2023; 125:151976. [PMID: 36455339 DOI: 10.1016/j.acthis.2022.151976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Epithelial membrane protein 2 (EMP2) is a cell surface protein composed of approximately 160 amino acids and encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. Although EMP2 expression has been investigated in several diseases, much remains unknown regarding its mechanism of action and the extent of its role in pathogenesis. Our aim was to perform a systematic review on the involvement of EMP2 in disease processes and the current usage of anti-EMP2 therapies. METHODS A Boolean search of the English-language medical literature was performed. PubMed, Scopus, Cochrane, and Web of Science were used to identify relevant citations. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS 52 studies met the inclusion criteria for qualitative analysis. Of those, 28 (53.8%) were human-only studies, 11 (21.2%) were animal-only studies, and 13 (25%) studies included both human and animal models. Furthermore, 34 (65.4%) studies focused on EMP2's role in neoplasms, while the remaining 18 (34.6%) articles evaluated its role in other pathologies. CONCLUSION Overall, the evidence suggests the mechanisms of action of EMP2 are context dependent. Promising results have been produced by utilizing EMP2 as a biomarker and therapeutic target. More studies are warranted to better understand the mechanism and comprehend the role of EMP2 in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Khashayar Mozaffari
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Mahlet Mekonnen
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Maya Harary
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Meachelle Lum
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Brian Aguirre
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Anubhav Chandla
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.
| |
Collapse
|
6
|
Zhang N, Zhu HP, Huang W, Wen X, Xie X, Jiang X, Peng C, Han B, He G. Unraveling the structures, functions and mechanisms of epithelial membrane protein family in human cancers. Exp Hematol Oncol 2022; 11:69. [PMID: 36217151 PMCID: PMC9552464 DOI: 10.1186/s40164-022-00321-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023] Open
Abstract
Peripheral myelin protein 22 (PMP22) and epithelial membrane proteins (EMP-1, -2, and -3) belong to a small hydrophobic membrane protein subfamily, with four transmembrane structures. PMP22 and EMPs are widely expressed in various tissues and play important roles in cell growth, differentiation, programmed cell death, and metastasis. PMP22 presents its highest expression in the peripheral nerve and participates in normal physiological and pathological processes of the peripheral nervous system. The progress of molecular genetics has shown that the genetic changes of the PMP22 gene, including duplication, deletion, and point mutation, are behind various hereditary peripheral neuropathies. EMPs have different expression patterns in diverse tissues and are closely related to the risk of malignant tumor progression. In this review, we focus on the four members in this protein family which are related to disease pathogenesis and discuss gene mutations and post-translational modification of them. Further research into the interactions between structural alterations and function of PMP22 and EMPs will help understand their normal physiological function and role in diseases and might contribute to developing novel therapeutic tools.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re‑Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
7
|
Yu SY, Koh EJ, Kim SH, Song B, Lee JS, Son SW, Seo H, Hwang SY. Analysis of multi-omics data on the relationship between epigenetic changes and nervous system disorders caused by exposure to environmentally harmful substances. ENVIRONMENTAL TOXICOLOGY 2022; 37:802-813. [PMID: 34921580 DOI: 10.1002/tox.23444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Environmentally hazardous substances and exposure to these can cause various diseases. Volatile organic compounds can easily evaporate into the atmosphere, thereby exerting toxic effects through either the skin or respiratory tract exposures. Toluene, a neurotoxin, has been widely used in various industries. However, it has a detrimental effect on the nervous system (such as hallucinations or memory impairment), while data on the mechanism underlaying its harmful effects remain limited. Therefore, this study investigates the effect of toluene on the nervous system via epigenetic and genetic changes of toluene-exposed individuals. We identified significant epigenetic changes and confirmed that the affected abnormally expressed genes negatively influenced the nervous system. In particular, we confirmed that the miR-15 family, upregulated by toluene, downregulated ABL2, which could affect the R as signaling pathway resulting in neuronal structural abnormalities. Our study suggests that miR-15a-5p, miR-15b-5p, miR-16-5p, miR-301a-3p, and lncRNA NEAT1 may represent effective epigenomic markers associated with neurodegenerative diseases caused by toluene.
Collapse
Affiliation(s)
- So Yeon Yu
- Department of Molecular & Life Science, Hanyang University, Ansan, South Korea
| | - Eun Jung Koh
- Department of Bionano Engineering, Hanyang University, Ansan, South Korea
| | - Seung Hwan Kim
- Department of Bionano Engineering, Hanyang University, Ansan, South Korea
| | - Byeongwook Song
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Ji Su Lee
- Department of Molecular & Life Science, Hanyang University, Ansan, South Korea
| | - Sang Wook Son
- Department of Dermatology, Korea University College of Medicine, Seoul, South Korea
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Seung Yong Hwang
- Department of Molecular & Life Science, Hanyang University, Ansan, South Korea
- Department of Applied Artificial Intelligence, Hanyang University, Ansan, South Korea
| |
Collapse
|
8
|
Xia H, Liu B, Shen N, Xue J, Chen S, Guo H, Zhou X. circRNA-0002109 promotes glioma malignant progression via modulating the miR-129-5P/EMP2 axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1-15. [PMID: 34938603 PMCID: PMC8646083 DOI: 10.1016/j.omtn.2021.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/05/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023]
Abstract
Glioma is a common intracranial malignant tumor with high mortality and high recurrence rate. In recent years, increasing evidence has demonstrated that circular RNAs (circRNAs) are potential biomarkers and therapeutic targets for many tumors. However, the role of circRNAs in glioma remains unclear. In this study, we found that circRNA-0002109 was highly expressed in glioma tissues and cell lines. Downregulation of circRNA-0002109 expression inhibited the proliferation, migration, and invasion of glioma cells and inhibited the malignant progression of tumors in vivo. Investigations into the relevant mechanisms showed that circRNA-0002109 upregulated the expression of EMP2 through endogenous competitive binding of microRNA-129-5P (miR-129-5P), which partially alleviated the inhibitory effect of miR-129-5P on epithelial membrane protein-2 (EMP2) and ultimately promoted the malignant development of glioma. Our results indicate that circRNA-0002109 plays an important role in the proliferation, invasion, and migration of glioma cells by regulating the miR-129-5P/EMP2 axis, which provides a new potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Haibin Xia
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang East Road, Guangzhou 510260, China.,Trauma Center, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Boyang Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Nanxiang Shen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang East Road, Guangzhou 510260, China
| | - Jinhua Xue
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Siyu Chen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang East Road, Guangzhou 510260, China
| | - Hongbo Guo
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiaozhong Zhou
- Trauma Center, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
9
|
EL-Ghlban S, AbouElnour ES, EL- Torgoman AEMAEK, Abu Elabas SMS. Gene expression of Epithelial Membrane Protein 2 gene and β1-Integrin gene in patients with breast cancer. Biochem Biophys Rep 2020; 22:100708. [PMID: 32490210 PMCID: PMC7261703 DOI: 10.1016/j.bbrep.2019.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/02/2022] Open
Abstract
Background Breast cancer is the most common invasive cancer and the leading cause of cancer death in women. The function of over a thousand genes is reported as affected by genetic modifications in breast cancer. Objectives To study the gene expression of Epithelial Membrane 2 (EMP2) and β1-Integrin genes in patients with breast cancer. Subjects and methods This study was carried out by cooperation between the Biochemistry Division Department of Chemistry, Faculty of Science and Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University. This study included 120 subjects divided into 2 groups Group I: Included 60 women with breast cancer undergoing modified radical mastectomy. Tissue specimens were taken from the cancerous breast tissue and from the marginal healthy breast tissues. Group II: Included 60 age and sex-matched apparently healthy women served as a control group. All patients participants were subjected to full history taking, general clinical examination, abdominal ultrasound, CT-scan for abdomen, mammography, fine needle biopsy, histopathological examination, immunostaining of tissues, metastatic work up (chest x-ray and bone scan) and laboratory investigations including: Complete blood count (patients and controls), serum carbohydrate antigen 15–3 (patients and controls), detection of EMP2 and β1-Integrin genes expression in the tissue samples by formation of cDNA by reverse transcription PCR after RNA extraction and real-time PCR using SYBR Green technique. Results Compared to healthy tissues, the breast cancer tissues had significant higher EMP2 and β1-Integringene expression levels. Also, there was a significant increase in CA15-3 in patients group as compared with the control group. It was found that EMP2 and β1-Integrin expression in malignant tissue samples correlates with advanced and metastatic disease. Conclusion The gene expression of EMP2 and β1-Integrin are important markers for the severity of breast cancer and they are good indicators of its prognosis.
Collapse
|
10
|
Ahmat Amin MKB, Shimizu A, Ogita H. The Pivotal Roles of the Epithelial Membrane Protein Family in Cancer Invasiveness and Metastasis. Cancers (Basel) 2019; 11:E1620. [PMID: 31652725 PMCID: PMC6893843 DOI: 10.3390/cancers11111620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
The members of the family of epithelial membrane proteins (EMPs), EMP1, EMP2, and EMP3, possess four putative transmembrane domain structures and are composed of approximately 160 amino acid residues. EMPs are encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. The GAS3/PMP22 family members play roles in cell migration, growth, and differentiation. Evidence indicates an association of these molecules with cancer progression and metastasis. Each EMP has pro- and anti-metastatic functions that are likely involved in the complex mechanisms of cancer progression. We have recently demonstrated that the upregulation of EMP1 expression facilitates cancer cell migration and invasion through the activation of a small GTPase, Rac1. The inoculation of prostate cancer cells overexpressing EMP1 into nude mice leads to metastasis to the lymph nodes and lungs, indicating that EMP1 contributes to metastasis. Pro-metastatic properties of EMP2 and EMP3 have also been proposed. Thus, targeting EMPs may provide new insights into their clinical utility. Here, we highlight the important aspects of EMPs in cancer biology, particularly invasiveness and metastasis, and describe recent therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Khusni B Ahmat Amin
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
- Translational Research Unit, Department of International Collaborative Research, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| |
Collapse
|
11
|
Wang M, Li S, Zhang P, Wang Y, Wang C, Bai D, Jiang X. EMP2 acts as a suppressor of melanoma and is negatively regulated by mTOR-mediated autophagy. J Cancer 2019; 10:3582-3592. [PMID: 31333775 PMCID: PMC6636303 DOI: 10.7150/jca.30342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is one of the most common malignant skin tumors and advanced melanoma is usually associated with a poor prognosis. In the current study, we demonstrated the tumor suppressing role of epithelial membrane protein-2 (EMP2) by inducing apoptosis in a A375 human melanoma cell line. Mechanistically, the low expression of EMP2 in melanoma is partially due to autophagic protein degradation mediated by the mTOR pathway. These results suggest there is regulation of autophagy as well as EMP2 levels might be an interesting novel targeted therapeutic strategy for melanoma. Although the further investigation is needed to deeply understand the regulatory mechanisms of EMP2 in melanoma progression and metastasis, our results clarify the functions and mechanisms of autophagy in melanoma, and shed new light on novel targeted therapeutics for melanoma.
Collapse
Affiliation(s)
- Manyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Sijia Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Peng Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, PR China
| | - Yujia Wang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Chunting Wang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Paediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xian Jiang
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
12
|
Liang Z, Yang Y, Jia F, Sai K, Ullah S, Fidelis C, Lin Z, Li F. Intrathecal Delivery of Folate Conjugated near-Infrared Quantum Dots for Targeted in Vivo Imaging of Gliomas in Mice Brains. ACS APPLIED BIO MATERIALS 2019; 2:1432-1439. [DOI: 10.1021/acsabm.8b00629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Yaqi Yang
- Department of Anatomy and Neurobiology, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | | | - Ke Sai
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | | | | | | | | |
Collapse
|