1
|
Feng S, Zhu L, Qin Y, Kou K, Liu Y, Zhang G, Wang Z, Lu H, Sun R. Machine learning model reveals the role of angiogenesis and EMT genes in glioma patient prognosis and immunotherapy. Biol Direct 2024; 19:113. [PMID: 39533401 PMCID: PMC11555840 DOI: 10.1186/s13062-024-00565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Gliomas represent a highly aggressive class of tumors located in the brain. Despite the availability of multiple treatment modalities, the prognosis for patients diagnosed with glioma remains unfavorable. Therefore, further exploration of new biomarkers is crucial to enhance the prognostic assessment of glioma and to investigate more effective treatment options. In this research, we utilized multiple machine learning techniques to assess the significance of genes related to angiogenesis and epithelial-mesenchymal transition (EMT) in the context of prognosis and treatment for glioma patients. The random forest algorithm highlighted the significance of CALU, and further analysis indicated that the effect of CALU on glioma progression may be regulated by MYC. Different machine learning approaches were employed in our investigation to uncover crucial genes associated with angiogenesis and EMT in glioma. Our findings verify the connection between these genes and the prognosis of patients with glioma, as well as the results of immunotherapeutic interventions. Notably, through experimental verification, we identified CALU as a new prognostic marker for glioma, and inhibiting the expression of CALU can impede the progression of glioma.
Collapse
Affiliation(s)
- Suyin Feng
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
- Department of Neurosurgery, Donghai County People's Hospital, Lianyungang, Jiangsu, 222000, China
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital, Lianyungang, Jiangsu, 222000, China
- Cardio-Cerebral Vascular Disease Prevention and Treatment Innovation Center, Donghai County People's Hospital, Lianyungang, Jiangsu, 222000, China
| | - Long Zhu
- Department of Neurosurgery, Donghai County People's Hospital, Lianyungang, Jiangsu, 222000, China
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital, Lianyungang, Jiangsu, 222000, China
- Cardio-Cerebral Vascular Disease Prevention and Treatment Innovation Center, Donghai County People's Hospital, Lianyungang, Jiangsu, 222000, China
| | - Yan Qin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kun Kou
- Department of Neurosurgery, Donghai County People's Hospital, Lianyungang, Jiangsu, 222000, China
| | - Yongtai Liu
- Department of Neurosurgery, Donghai County People's Hospital, Lianyungang, Jiangsu, 222000, China
| | - Guangmin Zhang
- Department of Neurosurgery, Donghai County People's Hospital, Lianyungang, Jiangsu, 222000, China
| | - Ziheng Wang
- The School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China.
| | - Hua Lu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China.
| | - Runfeng Sun
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital, Lianyungang, Jiangsu, 222000, China.
- Cardio-Cerebral Vascular Disease Prevention and Treatment Innovation Center, Donghai County People's Hospital, Lianyungang, Jiangsu, 222000, China.
| |
Collapse
|
2
|
Salmaninejad A, Layeghi SM, Falakian Z, Golestani S, Kobravi S, Talebi S, Yousefi M. An update to experimental and clinical aspects of tumor-associated macrophages in cancer development: hopes and pitfalls. Clin Exp Med 2024; 24:156. [PMID: 39003350 PMCID: PMC11246281 DOI: 10.1007/s10238-024-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor-associated macrophages (TAMs) represent one of the most abundant tumor-infiltrating stromal cells, and their normal function in tumor microenvironment (TME) is to suppress tumor cells by producing cytokines which trigger both direct cell cytotoxicity and antibody-mediated immune response. However, upon prolonged exposure to TME, the classical function of these so-called M1-type TAMs can be converted to another type, "M2-type," which are recruited by tumor cells so that they promote tumor growth and metastasis. This is the reason why the accumulation of TAMs in TME is correlated with poor prognosis in cancer patients. Both M1- and M2-types have high degree of plasticity, and M2-type cells can be reprogrammed to M1-type for therapeutic purposes. This characteristic introduces TAMs as promising target for developing novel cancer treatments. In addition, inhibition of M2-type cells and blocking their recruitment in TME, as well as their depletion by inducing apoptosis, are other approaches for effective immunotherapy of cancer. In this review, we summarize the potential of TAMs to be targeted for cancer immunotherapy and provide an up-to-date about novel strategies for targeting TAMs.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Falakian
- Department of Laboratory Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Shahin Golestani
- Department of Ophthalmology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Tehran Azad University, Tehran, Iran
| | - Samaneh Talebi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Liang T, Zhou X, Wang Y, Ma W. Glioma hexokinase 3 positively correlates with malignancy and macrophage infiltration. Metab Brain Dis 2024; 39:719-729. [PMID: 38687460 DOI: 10.1007/s11011-023-01333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/01/2023] [Indexed: 05/02/2024]
Abstract
BACKGROUND Glioma is the main subtype of primary central nervous system (CNS) tumor with high malignancy and poor prognosis under current therapeutic approaches. Glycolysis and suppressive tumor microenvironment (TME) are key markers of glioma with great importance for aggressive features of glioma and inferior clinical outcomes. Hexokinase 3 (HK3) is an important rate-limiting enzyme in glycolysis, but its function in glioma remains unknown. METHODS This study comprehensively assessed the expression distribution and immunological effect of HK3 via pan-cancer analysis based on datasets from Genotype Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA). Furthermore, it explored the malignant phenotype and genomic landscape between low-HK3 and high-HK3 expression groups in gliomas from Chinese Glioma Genome Atlas (CGGA) and TCGA. Moreover, data from the TIMER website predicted the relationship between macrophage infiltration and HK3 expression. Also, single-cell sequencing data were used to validate the relationship. RESULTS For pan-cancer patients, HK3 was expressed in various cancers. The results showed that HK3 was highly expressed in gliomas and positively correlated with tumor-infiltrating immune cells (TIICs), immune checkpoints, immunomodulators, and chemokines. Meanwhile, HK3 expression was highest in normal immune cells and tissues. In gliomas, the expression of HK3 was found to be closely correlated with the malignant clinical characteristics and the infiltration of macrophages. Also, HK3 was proven to be positively associated with macrophage through single-cell sequencing data and immunohistochemistry techniques. Finally, it is predicted that samples with high HK3 expression are often malignant entities and also significant genomic aberrations of driver oncogenes. CONCLUSIONS This is the first comprehensive research to figure out the relationship between HK3 and TME characteristics in gliomas. HK3 is positively associated with macrophage infiltration and can induce the immunosuppressive TME and malignant phenotype of gliomas.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Zeng Z, Hu C, Ruan W, Zhang J, Lei S, Yang Y, Peng P, Pan F, Chen T. A specific immune signature for predicting the prognosis of glioma patients with IDH1-mutation and guiding immune checkpoint blockade therapy. Front Immunol 2022; 13:1001381. [PMID: 36159801 PMCID: PMC9500319 DOI: 10.3389/fimmu.2022.1001381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Isocitrate dehydrogenase (IDH1) is frequently mutated in glioma tissues, and this mutation mediates specific tumor-promoting mechanisms in glioma cells. We aimed to identify specific immune biomarkers for IDH1-mutation (IDH1mt) glioma. The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) were used to obtain RNA sequencing data and clinical characteristics of glioma tissues, while the stromal and immune scores of TCGA glioma tissues were determined using the ESTIMATE algorithm. Differentially expressed genes (DEGs), the protein–protein interaction(PPI) network, and least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were used to select hub genes associated with stroma and immune scores and the prognoses of patients and to construct the risk model. The practicability and specificity of the risk model in both IDH1mt and IDH1-wildtype (wtIDH1) gliomas in TCGA and CGGA were evaluated. Molecular mechanisms, immunological characteristics and benefits of immune checkpoint blockade therapy in glioma tissues with IDH1mt were analyzed using GSEA, immunohistochemical staining, CIBERSORT, and T-cell dysfunction and exclusion (TIDE) analysis. The overall survival rate for IDH1mt-glioma patients with high stroma/immune scores was lower than that for those with low stroma/immune scores. A total of 222 DEGs were identified in IDH1mt glioma tissues with high stroma/immune scores. Among them, 72 genes had interactions in the PPI network, while three genes, HLA-DQA2, HOXA3, and SAA2, were selected as hub genes and used to construct risk models classifying patients into high- and low-risk score groups, followed by LASSO and Cox regression analyses. This risk model showed prognostic value in IDH1mt glioma in both TCGA and CCGA; nevertheless, the model was not suitable for wtIDH1 glioma. The risk model may act as an independent prognostic factor for IDH1mt glioma. IDH1mt glioma tissues from patients with high-risk scores showed more infiltration of M1 and CD8 T cells than those from patients with low-risk scores. Moreover, TIDE analysis showed that immune checkpoint blockade(ICB) therapy was highly beneficial for IDH1mt patients with high-risk scores. The risk model showed specific potential to predict the prognosis of IDH1mt-glioma patients, as well as guide ICB, contributing to the diagnosis and therapy of IDH1mt-glioma patients.
Collapse
Affiliation(s)
- Zhirui Zeng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Chujiao Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Wanyuan Ruan
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jinjuan Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Shan Lei
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Yushi Yang
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pailan Peng
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Pailan Peng, ; Feng Pan, ; Tengxiang Chen,
| | - Feng Pan
- Department of Bone and Joint Surgery, Gui Zhou Orthopedic Hospital, Guiyang, China
- *Correspondence: Pailan Peng, ; Feng Pan, ; Tengxiang Chen,
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Pailan Peng, ; Feng Pan, ; Tengxiang Chen,
| |
Collapse
|
6
|
Zhao Z, Wang Z, Wu Y, Liao D, Zhao B. Comprehensive analysis of TAMs marker genes in glioma for predicting prognosis and immunotherapy response. Mol Immunol 2022; 144:78-95. [DOI: 10.1016/j.molimm.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022]
|
7
|
Zheng G, Han T, Hu X, Yang Z, Wang J, Wen Z, Li H, Wang H. NCAPG Promotes Tumor Progression and Modulates Immune Cell Infiltration in Glioma. Front Oncol 2022; 12:770628. [PMID: 35372056 PMCID: PMC8964493 DOI: 10.3389/fonc.2022.770628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Glioma is one of the most deadly types of brain cancer. As it is highly invasive, the prognosis for glioma patients remains dismal, with median survival rarely exceeding 16 months. Thus, developing a new prognostic biomarker for glioma and investigating its molecular mechanisms is necessary for the development of an efficient treatment strategy. In this study, we analyzed a cohort of 1,131 glioma patients using RNA-seq data from The Cancer Genome Atlas (TCGA project) and Gene Expression Omnibus (GSE4290 and GSE16011 datasets), and validated the results using the RNA-seq data of 1,018 gliomas from the Chinese Glioma Genome Atlas (CGGA project). We used the R language as the main tool for statistical analysis and data visualization. We found that NCAPG, a mitosis-associated chromosomal condensing protein, is highly expressed in glioma tissues. Furthermore, the expression of NCAPG increased significantly with the increase in tumor grade, and high NCAPG expression was found to be a predictor of poor overall survival in glioma patients (P < 0.001). This result shows that NCAPG expression could be an independent prognostic factor. Importantly, when the expression of NCAPG was knocked down, the CCK-8 assay revealed that the proliferation of glioma cells (LN-229 and T98G cell lines) decreased significantly compared with the control group. In addition, the healing rates of these cells were significantly lower in the si-NCAPG group than in the control group (P < 0.001). We then used the CIBERSORT algorithm to analyze the expression levels of 22 subpopulations of immune cells and found that NCAPG was significantly negatively correlated with natural killer cell activation. In addition, it was positively correlated with MHC-I molecules and ADAM17. Our study is first in comprehensively describing the high expression of NCAPG in glioma. It also shows that NCAPG can function as an independent prognostic predictor of glioma, and that targeting NCAPG can be a new strategy for the treatment of glioma patients.
Collapse
Affiliation(s)
- Guangrong Zheng
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
- Department of Radiology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaomu Hu
- Department of Pathology, Huashan Hospital, FuDan University, Shanghai, China
| | - Zhou Yang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jin Wang
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zhenyi Wen
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hongjin Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Markwell SM, Ross JL, Olson CL, Brat DJ. Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathol 2022; 143:291-310. [PMID: 35039931 DOI: 10.1007/s00401-021-02401-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma is the most common primary brain tumor and has a dismal prognosis. The development of central necrosis represents a tipping point in the evolution of these tumors that foreshadows aggressive expansion, swiftly leading to mortality. The onset of necrosis, severe hypoxia and associated radial glioma expansion correlates with dramatic tumor microenvironment (TME) alterations that accelerate tumor growth. In the past, most have concluded that hypoxia and necrosis must arise due to "cancer outgrowing its blood supply" when rapid tumor growth outpaces metabolic supply, leading to diffusion-limited hypoxia. However, growing evidence suggests that microscopic intravascular thrombosis driven by the neoplastic overexpression of pro-coagulants attenuates glioma blood supply (perfusion-limited hypoxia), leading to TME restructuring that includes breakdown of the blood-brain barrier, immunosuppressive immune cell accumulation, microvascular hyperproliferation, glioma stem cell enrichment and tumor cell migration outward. Cumulatively, these adaptations result in rapid tumor expansion, resistance to therapeutic interventions and clinical progression. To inform future translational investigations, the complex interplay among environmental cues and myriad cell types that contribute to this aggressive phenotype requires better understanding. This review focuses on contributions from intratumoral thrombosis, the effects of hypoxia and necrosis, the adaptive and innate immune responses, and the current state of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Steven M Markwell
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA
| | - James L Ross
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Cheryl L Olson
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave. Ward 3-140, Chicago, IL, USA.
| |
Collapse
|
9
|
Lu J, Chen Y, Wen L, Zhou Q, Yan S. LncRNA CDKN2B-AS1 contributes to glioma development by regulating the miR-199a-5p/DDR1 axis. J Gene Med 2021; 24:e3389. [PMID: 34559933 DOI: 10.1002/jgm.3389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) is upregulated in glioma, its function and potential mechanism in glioma remain unclear. METHODS CDKN2B-AS1 level in glioma tissues and cell lines LN229, U251, and U87 was measured by qRT-PCR. Loss-of-function assays using short hairpin RNA for CDKN2B-AS1 (sh-CDKN2B-AS1) were performed to evaluate the effect of CDKN2B-AS1 on cell invasion, migration, proliferation, and apoptosis. The relationship among CDKN2B-AS1, miR-199a-5p, and DDR1 was determined by bioinformatics analysis and luciferase reporter assay. Rescue experiments were conducted to explore the function of CDKN2B-AS1 and miR-199a-5p in glioma. An in vivo animal model of lentivirally transduced U87 glioma xenografts in mice was established to confirm the role of CDKN2B-AS1. RESULTS CDKN2B-AS1 is significantly upregulated in glioma tissues and cell lines. CDKN2B-AS1 knockdown significantly inhibits cell proliferation, invasion, and migration, while promoting apoptosis of glioma cell lines U251 and U87. Further, a miR-199a-5p inhibitor attenuates the inhibitory effects of sh-CDKN2B-AS1 on these cell phenotypes. CDKN2B-AS1 positively regulates DDR1 expression by directly sponging miR-199a-5p. Moreover, CDKN2B-AS1 knockdown efficiently inhibits U87 tumor xenograft growth in mice. CONCLUSION Our study reveals that CDKN2B-AS1 promotes glioma development by regulating the miR-199a-5p/DDR1 axis, suggesting that this lncRNA might be a potential therapeutic target.
Collapse
Affiliation(s)
- Jiachao Lu
- Department of Neurosurgery, The first affiliated hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yuanjun Chen
- Department of Neurosurgery, The first affiliated hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Liangbao Wen
- Department of Neurosurgery, The first affiliated hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Quan Zhou
- Department of Neurosurgery, The first affiliated hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| | - Sheng Yan
- Department of Neurosurgery, The first affiliated hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
10
|
Zhao H, Chen Y, Shen P, Gong L. Identification of Immune Cell Infiltration Landscape and Their Prognostic Significance in Uveal Melanoma. Front Cell Dev Biol 2021; 9:713569. [PMID: 34513843 PMCID: PMC8427429 DOI: 10.3389/fcell.2021.713569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Uveal melanoma (UVM) is the most common primary intraocular cancer in adults. Increasing evidence has demonstrated that immune cell infiltration (ICI) is crucial in predicting patient outcomes and therapeutic efficacy. Thus, describing the immune cell infiltrative landscape of UVM tumors may yield a novel prognostic marker and provide direction for immunotherapeutic selection. In this study, the gene expression data and clinical information of UVM patients were obtained from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. The ICI landscape of UVM was analyzed using the CIBERSORT and ESTIMATE algorithms. Two ICI phenotypes were defined, and the ICI scores were calculated by using principal component analysis algorithms. We found that a subtype with high ICI scores had poorer prognosis and increased expression levels of immune checkpoint-related genes. This study demonstrates that ICI scores are an independent prognostic biomarker and highlights their value in predicting immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia, Chinese of Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peijun Shen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia, Chinese of Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|