1
|
Day CA, Hinchcliffe EH, Robinson JP. H3K27me3 in Diffuse Midline Glioma and Epithelial Ovarian Cancer: Opposing Epigenetic Changes Leading to the Same Poor Outcomes. Cells 2022; 11:cells11213376. [PMID: 36359771 PMCID: PMC9655269 DOI: 10.3390/cells11213376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Histone post-translational modifications modulate gene expression through epigenetic gene regulation. The core histone H3 family members, H3.1, H3.2, and H3.3, play a central role in epigenetics. H3 histones can acquire many post-translational modifications, including the trimethylation of H3K27 (H3K27me3), which represses transcription. Triple methylation of H3K27 is performed by the histone methyltransferase Enhancer of Zeste Homologue 2 (EZH2), a component of the Polycomb Repressive Complex 2. Both global increases and decreases in H3K27me3 have been implicated in a wide range of cancer types. Here, we explore how opposing changes in H3K27me3 contribute to cancer by highlighting its role in two vastly different cancer types; (1) a form of glioma known as diffuse midline glioma H3K27-altered and (2) epithelial ovarian cancer. These two cancers vary widely in the age of onset, sex, associated mutations, and cell and organ type. However, both diffuse midline glioma and ovarian cancer have dysregulation of H3K27 methylation, triggering changes to the cancer cell transcriptome. In diffuse midline glioma, the loss of H3K27 methylation is a primary driving factor in tumorigenesis that promotes glial cell stemness and silences tumor suppressor genes. Conversely, hypermethylation of H3K27 occurs in late-stage epithelial ovarian cancer, which promotes tumor vascularization and tumor cell migration. By using each cancer type as a case study, this review emphasizes the importance of H3K27me3 in cancer while demonstrating that the mechanisms of histone H3 modification and subsequent gene expression changes are not a one-size-fits-all across cancer types.
Collapse
Affiliation(s)
- Charles A. Day
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Mayo Clinic, Rochester, MN 55902, USA
- Correspondence:
| | - Edward H. Hinchcliffe
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - James P. Robinson
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Loss of H3K27me3 in WHO grade 3 meningioma. Brain Tumor Pathol 2022; 39:200-209. [PMID: 35678886 DOI: 10.1007/s10014-022-00436-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 01/08/2023]
Abstract
Immunohistochemical quantification of H3K27me3 was reported to distinguish meningioma patients with an unfavorable prognosis but is not yet established as a prognostic biomarker within WHO grade 3 meningiomas. We studied H3K27me3 loss in a series of biopsies from primary and secondary malignant meningioma to validate its prognostic performance and describe if loss of H3K27me3 occurs during malignant transformation. Two observers quantified H3K27me3 status as "complete loss", < 50% and > 50% stained cells in 110 tumor samples from a population-based consecutive cohort of 40 WHO grade 3 meningioma patients. We found no difference in overall survival (OS) in patients with > 50% H3K27me3 retention compared to < 50% in the cohort of patients with WHO grade 3 meningioma (Wald test p = 0.5). H3K27me3 staining showed heterogeneity in full section tumor slides while staining of the Barr body and peri-necrotic cells complicated quantification further. H3K27me3 expression differed without a discernible pattern between biopsies from repeated surgeries of meningioma recurrences. In conclusion, our results were not compatible with a systematic pattern of immunohistochemical H3K27me3 loss being associated with OS or malignant transformation of meningiomas and did not support H3K27me3 loss as a useful immunohistochemical biomarker within grade 3 meningiomas due to staining-specific challenges in quantification.
Collapse
|
3
|
Ammendola S, Rizzo PC, Longhi M, Zivelonghi E, Pedron S, Pinna G, Sala F, Nicolato A, Scarpa A, Barresi V. The Immunohistochemical Loss of H3K27me3 in Intracranial Meningiomas Predicts Shorter Progression-Free Survival after Stereotactic Radiosurgery. Cancers (Basel) 2022; 14:cancers14071718. [PMID: 35406488 PMCID: PMC8997117 DOI: 10.3390/cancers14071718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In this study, we aimed to investigate whether the immunohistochemical expression of H3K27me3 in meningiomas might predict tumor progression after stereotactic radiosurgery (SRS) performed for residual or recurrent disease. In 39 intracranial meningiomas, H3K27me3 loss was significantly associated with tumor progression (p = 0.0143) and shorter PFS after SRS (p = 0.0036). These findings suggest that the loss of H3K27me3 in meningiomas may correlate to a weaker response to SRS. Abstract The immunohistochemical loss of histone H3 trimethylated in lysine 27 (H3K27me3) was recently shown to predict recurrence of meningiomas after surgery. However, its association with tumor progression after stereotactic radiosurgery (SRS) is unexplored. To investigate whether H3K27 methylation status may predict progression-free survival (PFS) after SRS, we assessed H3K27me3 immunoexpression in thirty-nine treatment naïve, intracranial, meningiomas, treated with surgery and subsequent SRS for residual (twenty-three cases) or recurrent (sixteen cases) disease. H3K27me3 immunostaining was lost in seven meningiomas, retained in twenty-seven and inconclusive in five. Six of the seven meningiomas (86%) with H3K27me3 loss had tumor progression after SRS, compared to nine of twenty-seven (33%) with H3K27me3 retention (p = 0.0143). In addition, patients harboring a meningioma with H3K27me3 loss had significantly shorter PFS after SRS (range: 10–81 months; median: 34 months), compared to patients featuring a meningioma with retained H3K27me3 (range: 9–143 months; median: 62 months) (p = 0.0036). Nonetheless, tumor sagittal location was the only significant prognostic variable at multivariate analysis for PFS after SRS (p = 0.0142). These findings suggest a previously unreported role of H3K27me3 as a predictor of meningioma progression after SRS for recurrent or residual disease. Modulation of H3K27 methylation status may represent a novel therapeutic strategy to induce radiosensitization of meningiomas.
Collapse
Affiliation(s)
- Serena Ammendola
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy; (S.A.); (P.C.R.); (S.P.); (A.S.)
| | - Paola Chiara Rizzo
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy; (S.A.); (P.C.R.); (S.P.); (A.S.)
| | - Michele Longhi
- Unit of Stereotactic Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134 Verona, Italy; (M.L.); (E.Z.); (A.N.)
| | - Emanuele Zivelonghi
- Unit of Stereotactic Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134 Verona, Italy; (M.L.); (E.Z.); (A.N.)
| | - Serena Pedron
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy; (S.A.); (P.C.R.); (S.P.); (A.S.)
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134 Verona, Italy;
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134 Verona, Italy;
| | - Antonio Nicolato
- Unit of Stereotactic Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134 Verona, Italy; (M.L.); (E.Z.); (A.N.)
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy; (S.A.); (P.C.R.); (S.P.); (A.S.)
- ARC-NET Research Centre, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, 37134 Verona, Italy; (S.A.); (P.C.R.); (S.P.); (A.S.)
- Correspondence: ; Tel.: +39-0458124809
| |
Collapse
|