1
|
Masese FO, Fuss T, Bistarelli LT, Buchen-Tschiskale C, Singer G. Large herbivorous wildlife and livestock differentially influence the relative importance of different sources of energy for riverine food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154452. [PMID: 35278569 DOI: 10.1016/j.scitotenv.2022.154452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
In many regions of the world, large populations of native wildlife have declined or been replaced by livestock grazing areas and farmlands, with consequences for terrestrial-aquatic ecosystem connectivity and trophic resources supporting food webs in aquatic ecosystems. The river continuum concept (RCC) and the riverine productivity model (RPM) predict a shift of energy supplying aquatic food webs along rivers: from terrestrial inputs in low-order streams to autochthonous production in mid-sized rivers. In Afromontane-savanna landscapes, the shifting numbers of large mammalian wildlife present a physical continuum whose ecological implications for rivers is not clearly understood. Here, we studied the influence of replacing large wildlife (mainly hippos) with livestock on the fractional contribution of C3 vegetation, C4 grasses and periphyton on macroinvertebrates in the Mara River, which is an African montane-savanna river known to receive large subsidy fluxes of terrestrial organic matter and nutrients mediated by large mammalian herbivores (LMH), both wildlife and livestock, in its middle and lower reaches. Using stable carbon (δ13C) and nitrogen (δ15N) isotopes, we identified spatial patterns in the fractional contribution of allochthonous organic matter from C3 and C4 plants (woody vegetation and grasses, respectively) and autochthonous energy from periphyton for macroinvertebrates at various sites of the Mara River and its tributaries. Potential energy sources and invertebrates were sampled at 80 sites spanning stream orders 1 to 7, various catchment land uses (forest, agriculture and grasslands) and different loading rates of organic matter and nutrients by LMH (livestock and wildlife, i.e., hippopotamus). The fractional contribution of different sources of energy for macroinvertebrates along the river did not follow predictions of the RCC and RPM. First, the fractional contribution of C3 and C4 carbon was not related to river order or location along the fluvial continuum but to the loading of organic matter (dung) by both wildlife and livestock. Notably, C4 carbon was important for macroinvertebrates even in large river sections inhabited by hippos. Second, even in small 1st -3rd order forested streams, periphyton was a major source of energy for macroinvertebrates, and this was fostered by livestock inputs fuelling aquatic primary production throughout the river network. Importantly, our results show that replacing wildlife (hippos) with livestock shifts river systems towards greater reliance on autochthonous sources of energy through an algae-grazer pathway as opposed to reliance on allochthonous inputs of C4 carbon through a detrital pathway.
Collapse
Affiliation(s)
- Frank O Masese
- University of Eldoret, Department of Fisheries and Aquatic Science, P.O. Box 1125-30100, Eldoret, Kenya; Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
| | - Thomas Fuss
- Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Ecology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Lukas Thuile Bistarelli
- Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Ecology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Caroline Buchen-Tschiskale
- Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, 38116 Braunschweig, Germany; Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straβe 84, 15374 Müncheberg, Germany
| | - Gabriel Singer
- Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Ecology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Upadhayay HR, Zhang Y, Granger SJ, Micale M, Collins AL. Prolonged heavy rainfall and land use drive catchment sediment source dynamics: Appraisal using multiple biotracers. WATER RESEARCH 2022; 216:118348. [PMID: 35378448 DOI: 10.1016/j.watres.2022.118348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Excessive sediment loss degrades freshwater quality and is prone to further elevation and variable source contributions due to the combined effect of extreme rainfall and differing land uses. To quantify erosion and sediment source responses across scales, this study integrated work at both field and catchment scale for two hydrologically contrasting winters (2018-19 and 2019-20). Sediment load was estimated at the field scale (grassland-arable conversion system). Sediment source apportionment work was undertaken at the catchment scale (4.5 km2) and used alkanes, and both free and bound fatty acid carbon isotope signatures as diagnostic fingerprints to distinguish sediment sources: arable, pasture, woodland and stream banks. Sediment source apportionment based on bound fatty acids revealed a substantial shift in contributions, from stream banks dominating (70 ± 5%) in winter 2018-19, to arable land dominating (52 ± 7%) in the extreme wet winter 2019-20. Increases in sediment contributions from arable (∼3.9 times) and pasture (∼2.4 times) land at the catchment outlet during the winter 2019-20 were consistent with elevated sediment losses monitored at the field scale which indicated that low-magnitude high frequency rainfall alone increased sediment loss even from pasture by 350%. In contrast, carbon isotope signatures of alkanes and free fatty acids consistently estimated stream banks as a dominant source (i.e., ∼36% and ∼70% respectively) for both winters regardless of prolonged rainfall in winter 2019-20. Beyond quantifying the shifts in field scale sediment load and catchment scale sediment sources due to the changes in rainfall patterns, our results demonstrate valuable insight into how the fate of biotracers in soil and sediment manifests in the δ13C values of homologues and, in turn, their role in information gain for estimating sediment source contributions. Discrepancies in the estimated sediment source contributions using different biotracers indicate that without a careful appreciation of their biogeochemical limitations, erroneous interpretation of sediment source contributions can undermine management strategies for delivering more sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Hari Ram Upadhayay
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, United Kingdom.
| | - Yusheng Zhang
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, United Kingdom
| | - Steven J Granger
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, United Kingdom
| | - Mafalda Micale
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, United Kingdom; Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Feo di Vito 89122, Italy
| | - Adrian L Collins
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, United Kingdom
| |
Collapse
|
3
|
Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. QUATERNARY 2021. [DOI: 10.3390/quat4010006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be conducted to ensure the reliability of the sedimentary DNA signal. Building on the most recent literature and seven original case studies, we synthesize the state-of-the-art analytical procedures for effective sampling, extraction, amplification, quantification and/or generation of DNA inventories from sedimentary ancient DNA (sedaDNA) via high-throughput sequencing technologies. We provide recommendations based on current knowledge and best practises.
Collapse
|
4
|
Kritzberg ES, Hasselquist EM, Škerlep M, Löfgren S, Olsson O, Stadmark J, Valinia S, Hansson LA, Laudon H. Browning of freshwaters: Consequences to ecosystem services, underlying drivers, and potential mitigation measures. AMBIO 2020; 49:375-390. [PMID: 31367885 PMCID: PMC6965042 DOI: 10.1007/s13280-019-01227-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/03/2019] [Accepted: 07/10/2019] [Indexed: 05/05/2023]
Abstract
Browning of surface waters, as a result of increasing dissolved organic carbon and iron concentrations, is a widespread phenomenon with implications to the structure and function of aquatic ecosystems. In this article, we provide an overview of the consequences of browning in relation to ecosystem services, outline what the underlying drivers and mechanisms of browning are, and specifically focus on exploring potential mitigation measures to locally counteract browning. These topical concepts are discussed with a focus on Scandinavia, but are of relevance also to other regions. Browning is of environmental concern as it leads to, e.g., increasing costs and risks for drinking water production, and reduced fish production in lakes by limiting light penetration. While climate change, recovery from acidification, and land-use change are all likely factors contributing to the observed browning, managing the land use in the hydrologically connected parts of the landscape may be the most feasible way to counteract browning of natural waters.
Collapse
Affiliation(s)
- Emma S. Kritzberg
- Biology Department, Lund University, Ecology Building, Sölvegatan 37, 223 62 Lund, Sweden
| | - Eliza Maher Hasselquist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd, 901 83 Umeå, Sweden
| | - Martin Škerlep
- Biology Department, Lund University, Ecology Building, Sölvegatan 37, 223 62 Lund, Sweden
| | - Stefan Löfgren
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, 750 07 Uppsala, Sweden
| | - Olle Olsson
- Stockholm Environment Institute, Linnégatan 87D, P.O. Box 242 18, 104 51 Stockholm, Sweden
| | - Johanna Stadmark
- IVL Svenska Miljöinstitutet, Box 530 21, 400 14 Göteborg, Sweden
| | | | - Lars-Anders Hansson
- Biology Department, Lund University, Ecology Building, Sölvegatan 37, 223 62 Lund, Sweden
| | - Hjalmar Laudon
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd, 901 83 Umeå, Sweden
| |
Collapse
|
5
|
Bainbridge Z, Lewis S, Bartley R, Fabricius K, Collier C, Waterhouse J, Garzon-Garcia A, Robson B, Burton J, Wenger A, Brodie J. Fine sediment and particulate organic matter: A review and case study on ridge-to-reef transport, transformations, fates, and impacts on marine ecosystems. MARINE POLLUTION BULLETIN 2018; 135:1205-1220. [PMID: 30301020 DOI: 10.1016/j.marpolbul.2018.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Studies documenting the effects of land-derived suspended particulate matter (SPM, i.e., particulate organic matter and mineral sediment) on marine ecosystems are typically disconnected from terrestrial studies that determine their origin, transport and fate. This study reviews sources, transport, transformations, fate and effects of SPM along the 'ridge-to-reef' continuum. We show that some of the SPM can be transported over long distances and transformed into large and easily resuspendible organic-rich sediment flocs. These flocs may lead to prolonged reductions in water clarity, impacting upon coral reef, seagrass and fish communities. Using the Great Barrier Reef (NE Australia) as a case study, we identify the latest research tools to determine thresholds of SPM exposure, allowing for an improved appreciation of marine risk. These tools are used to determine ecologically-relevant end-of-basin load targets and reliable marine water quality guidelines, thereby enabling enhanced prioritisation and management of SPM export from ridge-to-reef.
Collapse
Affiliation(s)
- Z Bainbridge
- TropWATER, James Cook University, Townsville 4811, Australia.
| | - S Lewis
- TropWATER, James Cook University, Townsville 4811, Australia
| | - R Bartley
- CSIRO, Brisbane, Queensland 4068, Australia
| | - K Fabricius
- Australian Institute of Marine Science, PMB 3, Townsville MC, QLD 4810, Australia
| | - C Collier
- TropWATER, James Cook University, Townsville 4811, Australia
| | - J Waterhouse
- TropWATER, James Cook University, Townsville 4811, Australia
| | - A Garzon-Garcia
- Department of Environment and Science, GPO Box 5078, Brisbane 4001, Australia
| | - B Robson
- Australian Institute of Marine Science, PMB 3, Townsville MC, QLD 4810, Australia
| | - J Burton
- Department of Environment and Science, GPO Box 5078, Brisbane 4001, Australia
| | - A Wenger
- School of Earth and Environmental Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - J Brodie
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, Australia
| |
Collapse
|
6
|
Divergent biophysical controls of aquatic CO2 and CH4 in the World's two largest rivers. Sci Rep 2015; 5:15614. [PMID: 26494107 PMCID: PMC4616035 DOI: 10.1038/srep15614] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/29/2015] [Indexed: 11/10/2022] Open
Abstract
Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels.
Collapse
|
7
|
Lambert T, Darchambeau F, Bouillon S, Alhou B, Mbega JD, Teodoru CR, Nyoni FC, Massicotte P, Borges AV. Landscape Control on the Spatial and Temporal Variability of Chromophoric Dissolved Organic Matter and Dissolved Organic Carbon in Large African Rivers. Ecosystems 2015. [DOI: 10.1007/s10021-015-9894-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Masese FO, Abrantes KG, Gettel GM, Bouillon S, Irvine K, McClain ME. Are Large Herbivores Vectors of Terrestrial Subsidies for Riverine Food Webs? Ecosystems 2015. [DOI: 10.1007/s10021-015-9859-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|