1
|
Elizalde L, Arbetman M, Arnan X, Eggleton P, Leal IR, Lescano MN, Saez A, Werenkraut V, Pirk GI. The ecosystem services provided by social insects: traits, management tools and knowledge gaps. Biol Rev Camb Philos Soc 2020; 95:1418-1441. [PMID: 32525288 DOI: 10.1111/brv.12616] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022]
Abstract
Social insects, i.e. ants, bees, wasps and termites, are key components of ecological communities, and are important ecosystem services (ESs) providers. Here, we review the literature in order to (i) analyse the particular traits of social insects that make them good suppliers of ESs; (ii) compile and assess management strategies that improve the services provided by social insects; and (iii) detect gaps in our knowledge about the services that social insects provide. Social insects provide at least 10 ESs; however, many of them are poorly understood or valued. Relevant traits of social insects include high biomass and numerical abundance, a diversity of mutualistic associations, the ability to build important biogenic structures, versatile production of chemical defences, the simultaneous delivery of several ESs, the presence of castes and division of labour, efficient communication and cooperation, the capacity to store food, and a long lifespan. All these characteristics enhance social insects as ES providers, highlighting their potential, constancy and efficiency as suppliers of these services. In turn, many of these traits make social insects stress tolerant and easy to manage, so increasing the ESs they provide. We emphasise the need for a conservation approach to the management of the services, as well as the potential use of social insects to help restore habitats degraded by human activities. In addition, we stress the need to evaluate both services and disservices in an integrated way, because some species of social insects are among the most problematic invasive species and native pests. Finally, we propose two areas of research that will lead to a greater and more efficient use of social insects as ES providers, and to a greater appreciation of them by producers and decision-makers.
Collapse
Affiliation(s)
- Luciana Elizalde
- LIHo - Laboratorio Ecotono, INIBIOMA-CONICET-Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| | - Marina Arbetman
- Ecopol, INIBIOMA-CONICET - Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| | - Xavier Arnan
- CREAF, Cerdanyola del Vallès, Catalunya, Barcelona, E-08193, Spain
| | - Paul Eggleton
- Life Sciences Department, The Natural History Museum, London, SW7 5BD, U.K
| | - Inara R Leal
- Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, 50670-901, Brazil
| | - María Natalia Lescano
- LIHo - Laboratorio Ecotono, INIBIOMA-CONICET-Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| | - Agustín Saez
- Ecopol, INIBIOMA-CONICET - Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| | - Victoria Werenkraut
- LIHo - Laboratorio Ecotono, INIBIOMA-CONICET-Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| | - Gabriela I Pirk
- LIHo - Laboratorio Ecotono, INIBIOMA-CONICET-Universidad Nacional del Comahue, Pasaje Gutiérrez 1125, Bariloche, 8400, Argentina
| |
Collapse
|
3
|
Moir ML, Renton M, Hoffmann BD, Leng MC, Lach L. Development and testing of a standardized method to estimate honeydew production. PLoS One 2018; 13:e0201845. [PMID: 30110359 PMCID: PMC6093677 DOI: 10.1371/journal.pone.0201845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/22/2018] [Indexed: 11/21/2022] Open
Abstract
Honeydew production by Hemiptera is an ecologically important process that facilitates mutualisms and increases nutrient cycling. Accurate estimates of the amount of honeydew available in a system are essential for quantifying food web dynamics, energy flow, and the potential growth of sooty mould that inhibits plant growth. Despite the importance of honeydew, there is no standardized method to estimate its production when intensive laboratory testing is not feasible. We developed two new models to predict honeydew production, one based on insect body mass and taxonomic family, and one based on body mass and life stage. We tested the accuracy of both models’ predictions for a diverse range of honeydew-producing hemipteran families (Aphididae, Pseudococcidae, Coccidae, Psyllidae, Aleyrodidae, Delphacidae, Cicadellidae). The method based on body mass and family provided more accurate estimates of honeydew production, due to large variation in honeydew production among families. We apply our methodology to a case study, the recalculation of honeydew available to invasive red imported fire ant (Solenopsis invicta) in the United States. We find that the amount of honeydew may be an order of magnitude lower than that previously estimated (2.16 versus 21.6 grams of honeydew per day) and discuss possible reasons for the difference. We anticipate that being able to estimate honeydew production based on minimal biological information will have applications to agriculture, invasion biology, forestry, and carbon farming.
Collapse
Affiliation(s)
- Melinda L. Moir
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- * E-mail:
| | - Michael Renton
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- School of Agriculture and Environment, University of Western Australia, Crawley, Western Australia, Australia
| | - Benjamin D. Hoffmann
- CSIRO, Tropical Ecosystems Research Centre, Winnellie, Northern Territory, Australia
| | - Mei Chen Leng
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Lori Lach
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|