1
|
Yuan J, Yu X, Wu T, Gao S, Zhang T, Yan Q, Li R, Zhu J. Asymmetric Warming of Day and Night Benefits the Early Growth of Acer mono Seedlings More Than Symmetric Warming. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39253998 DOI: 10.1111/pce.15127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/11/2024]
Abstract
Asymmetric warming refers to the difference between the increase in daytime maximum temperature and the increase in nighttime minimum temperature and has been documented in temperate regions. However, its impacts on seedling growth have been largely ignored. In this study, seedlings of a widely distributed tree species, Acer mono Maxim., were exposed to both symmetric warming (SW) and asymmetric warming scenarios (day warming [DW], night warming [NW] and diurnal asymmetric warming [DAW]). Compared to control, all warming scenarios were found to enhance belowground biomass. DW promoted the seedling growth, while NW reduced the stem biomass. DAW did not impact the total biomass relative to the control. Compared to SW, DAW advanced phenology, increased indole-3-acetic acid content and chlorophyll content, which enhanced total biomass and stored more NSC in the root. Future DAW would be not beneficial to the growth of A. mono seedlings by comparing with the control. This research encourages further exploration of tree growth experiments under asymmetric warming conditions, as most studies tend to underestimate the warming effects on plant growth by focusing on SW. Incorporating the responses of seedling physiology and growth to non-uniform diurnal warming into earth system models is crucial for more accurately predicting carbon and energy balances in a warmer world.
Collapse
Affiliation(s)
- Junfeng Yuan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinlei Yu
- Guangzhou Beipei High School, Guangzhou, China
| | - Ting Wu
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, China
| | - Shitong Gao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Zhang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, China
| | - Qiaoling Yan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, China
| | - Rongping Li
- Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, China
| | - Jiaojun Zhu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, China
| |
Collapse
|
2
|
Bhattarai B, Sigurdsson BD, Sigurdsson P, Leblans N, Janssens I, Meynzer W, Devarajan AK, Truu J, Truu M, Ostonen I. Soil warming duration and magnitude affect the dynamics of fine roots and rhizomes and associated C and N pools in subarctic grasslands. ANNALS OF BOTANY 2023; 132:269-279. [PMID: 37471454 PMCID: PMC10583211 DOI: 10.1093/aob/mcad102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND AIMS The response of subarctic grassland's below-ground to soil warming is key to understanding this ecosystem's adaptation to future climate. Functionally different below-ground plant organs can respond differently to changes in soil temperature (Ts). We aimed to understand the below-ground adaptation mechanisms by analysing the dynamics and chemistry of fine roots and rhizomes in relation to plant community composition and soil chemistry, along with the duration and magnitude of soil warming. METHODS We investigated the effects of the duration [medium-term warming (MTW; 11 years) and long-term warming (LTW; > 60 years)] and magnitude (0-8.4 °C) of soil warming on below-ground plant biomass (BPB), fine root biomass (FRB) and rhizome biomass (RHB) in geothermally warmed subarctic grasslands. We evaluated the changes in BPB, FRB and RHB and the corresponding carbon (C) and nitrogen (N) pools in the context of ambient, Ts < +2 °C and Ts > +2 °C scenarios. KEY RESULTS BPB decreased exponentially in response to an increase in Ts under MTW, whereas FRB declined under both MTW and LTW. The proportion of rhizomes increased and the C-N ratio in rhizomes decreased under LTW. The C and N pools in BPB in highly warmed plots under MTW were 50 % less than in the ambient plots, whereas under LTW, C and N pools in warmed plots were similar to those in non-warmed plots. Approximately 78 % of the variation in FRB, RHB, and C and N concentration and pools in fine roots and rhizomes was explained by the duration and magnitude of soil warming, soil chemistry, plant community functional composition, and above-ground biomass. Plant's below-ground biomass, chemistry and pools were related to a shift in the grassland's plant community composition - the abundance of ferns increased and BPB decreased towards higher Ts under MTW, while the recovery of below-ground C and N pools under LTW was related to a higher plant diversity. CONCLUSION Our results indicate that plant community-level adaptation of below ground to soil warming occurs over long periods. We provide insight into the potential adaptation phases of subarctic grasslands.
Collapse
Affiliation(s)
- Biplabi Bhattarai
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - Bjarni D Sigurdsson
- Faculty of Environmental and Forest Sciences, The Agricultural University of Iceland, Iceland
| | - Páll Sigurdsson
- Faculty of Environmental and Forest Sciences, The Agricultural University of Iceland, Iceland
| | - Niki Leblans
- Climate Impact Research Centre, Umeå University, Sweden
| | - Ivan Janssens
- Department of Biology, University of Antwerp, Belgium
| | | | | | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Marika Truu
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| |
Collapse
|
3
|
Zhang S, Xia Z, Wang Q, Fu Y, Zhang G, Lu H. Soil cooling can improve maize root-shoot growth and grain yield in warm climate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107762. [PMID: 37207493 DOI: 10.1016/j.plaphy.2023.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Global warming causes topsoil temperatures to increase, which potentially leads to maize yield loss. We explored the effects of soil warming/cooling on root-shoot growth and maize grain yields by performing pot experiments with a heat-sensitive maize hybrid (HS208) and a normal maize hybrid (SD609) in warm temperate climate in 2019 and 2020. Our results reveal, for the first time, differences in root characteristics, leaf photosynthetic physiology, and yield responses to soil warming and cooling between normal and heat-sensitive maize varieties under a warm temperate climate. Soil warming (+2 and 4 °C) inhibited whole root growth by decreasing root length, volume, and dry mass weight, which indirectly reduced leaf photosynthetic capacity and decreased grain yield/plant by 15.10-24.10% versus control plants exposed to ambient temperature. Soil cooling (-2 °C) promoted root growth and leaf photosynthesis, and significantly increased grain yield of HS208 by 12.61%, although no significant change was found with SD609. It can be seen that under unfavorable conditions of global warming, selection of excellent stress-resistant hybrids plays an important role in alleviating the soil heat stress of maize in warm temperate climate regions.
Collapse
Affiliation(s)
- Shibo Zhang
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Zhenqing Xia
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Qi Wang
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Yafang Fu
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Guixin Zhang
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Haidong Lu
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| |
Collapse
|
4
|
Jiang Q, Lin C, Guo R, Xiong D, Yao X, Wang X, Chen T, Jia L, Wu D, Fan A, Chen G, Yang Y. Root nitrogen uptake capacity of Chinese fir enhanced by warming and nitrogen addition. TREE PHYSIOLOGY 2023; 43:31-46. [PMID: 36049081 DOI: 10.1093/treephys/tpac103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
There is a knowledge gap in the effects of climate warming and nitrogen (N) deposition on root N absorption capacity, which limits our ability to predict how climate change alters the N cycling and its consequences for forest productivity especially in subtropical areas where soil N availability is already high. In order to explore the effects and mechanism of warming and the N deposition on root N absorption capacity of Chinese fir (Cunninghamia lanceolata), a subtropical arbuscular mycorrhizal conifer, the fine root 15NH4+ and 15NO3- uptake kinetics at a reference temperature of 20 °C were measured across different seasons in a factorial soil warming (ambient, +5 °C) × N addition (ambient, +40 kg N ha-1 yr-1) experiment. The results showed that (i) compared with the control, warming increased the maximal uptake rate of NH4+ (Vmax,20 °C-NH4+) in summer, while N addition enhanced it in spring and summer; compared with non-warming treatments, warming treatments increased the uptake rate of NO3- at a reference concentration of 100 μmol (V100,20 °C-NO3-) in spring. (ii) The analysis of covariance showed that Vmax,20 °C-NH4+ was positively correlated with root mycorrhizal colonization rate (MCR) and V100,20 °C-NO3- was positively correlated with specific root respiration rate (SRR), whereas no N uptake kinetic parameter was correlated with specific root length, root N and non-structural carbon concentrations. Thus, our results demonstrate that warming-increased root NH4+ uptake might be related to warming-increased MCR, whereas warming-increased root NO3- uptake might be related to warming-increased SRR. We conclude that root NH4+ and NO3- uptake capacity of subtropical Chinese fir can be elevated under warming and N deposition, which could improve plantation productivity and mitigate N leaching loss and soil acidification.
Collapse
Affiliation(s)
- Qi Jiang
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Chengfang Lin
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Runquan Guo
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Decheng Xiong
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiaodong Yao
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiaohong Wang
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Tingting Chen
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Linqiao Jia
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Dongmei Wu
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Ailian Fan
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Guangshui Chen
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yusheng Yang
- Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
5
|
Wen X, Wang X, Ye M, Liu H, He W, Wang Y, Li T, Zhao K, Hou G, Chen G, Li X, Fan C. Response strategies of fine root morphology of Cupressus funebris to the different soil environment. FRONTIERS IN PLANT SCIENCE 2022; 13:1077090. [PMID: 36618632 PMCID: PMC9811150 DOI: 10.3389/fpls.2022.1077090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Understanding fine root morphology is crucial to uncover water and nutrient acquisition and transposition of fine roots. However, there is still a lack of knowledge regarding how the soil environment affects the fine root morphology of various root orders in the stable forest ecosystem. Therefore, this experiment assessed the response strategies of fine root morphology (first- to fifth -order fine roots) in four different soil environments. The results showed that fine root morphology was related to soil environment, and there were significant differences in specific root length (SRL), specific surface area (SRA), diameter (D), and root tissue density (RTD) of first- and second -order fine roots. Soil total nitrogen (TN), alkaline nitrogen (AN) and available phosphorus (AP) were positively correlated with SRL and SRA and negatively correlated with D and RTD. Soil moisture (SW) was positively correlated with the D and RTD of first- and second-order fine roots and negatively correlated with the SRL and SRA. Soil temperature (ST), organic carbon (OC), soil bulk density (SBD) and soil porosity (SP) were not significantly correlated with the D, SRL, SRA, and RTD of the first- and second -order fine roots. AN was positively correlated with SRL and SRA and negatively correlated with both D and RTD in the first- and second -order fine roots, and the correlation coefficient was very significant. Therefore, we finally concluded that soil AN was the most critical factor affecting root D, SRL, SRA and RTD of fine roots, and mainly affected the morphology of first- and second -order fine roots. In conclusion, our research provides support for understanding the relationship between fine root morphology and soil environment, and indicates that soil nutrient gradient forms good root morphology at intraspecific scale.
Collapse
Affiliation(s)
- Xiaochen Wen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiao Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Mengting Ye
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hai Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wenchun He
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianyi Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Kuangji Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Guirong Hou
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
6
|
Effects of High Temperature-Triggered Transcriptomics on the Physiological Adaptability of Cenococcum geophilum, an Ectomycorrhizal Fungus. Microorganisms 2022; 10:microorganisms10102039. [PMID: 36296315 PMCID: PMC9607556 DOI: 10.3390/microorganisms10102039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
High temperature stress caused by global warming presents a challenge to the healthy development of forestry. Cenococcum geophilum is a common ectomycorrhizal fungus (ECMF) in the forest system and has become an important fungus resource with application potential in forest vegetation restoration. In this study, three sensitive isolates of C. geophilum (ChCg01, JaCg144 and JaCg202) and three tolerant isolates of C. geophilum (ACg07, ChCg28 and ChCg100) were used to analyze the physiological and molecular responses to high temperature. The results showed that high temperature had a significant negative effect on the growth of sensitive isolates while promoting the growth of tolerant isolates. The antioxidative enzymes activity of C. geophilum isolates increased under high temperature stress, and the SOD activity of tolerant isolates (A07Cg and ChCg100) was higher than that of sensitive isolates (ChCg01 and JaCg202) significantly. The tolerant isolates secreted more succinate, while the sensitive isolates secreted more oxalic acid under high temperature stress. Comparative transcriptomic analysis showed that differentially expressed genes (DEGs) of six C. geophilum isolates were significantly enriched in "antioxidant" GO entry in the molecular. In addition, the "ABC transporters" pathway and the "glyoxylate and dicarboxylic acid metabolic" were shared in the three tolerant isolates and the three sensitive isolates, respectively. These results were further verified by RT-qPCR analysis. In conclusion, our findings suggest that C. geophilum can affect the organic acid secretion and increase antioxidant enzyme activity in response to high temperature by upregulating related genes.
Collapse
|
7
|
Wang X, Xu C, Xiong D, Yao X, Chen T, Jiang Q, Jia L, Fan A, Chen G. Root age-related response of fine root respiration of Chinese fir seedlings to soil warming. TREE PHYSIOLOGY 2022; 42:1177-1187. [PMID: 35043963 DOI: 10.1093/treephys/tpac004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The variation in fine root respiration with root age provides insight into root adaptation to climate warming, but the mechanism is poorly understood. In this study, we investigated the respiratory response of fine roots (<1 mm and 1-2 mm) of different ages (2-, 4- and 6-month old) of Chinese fir (Cunninghamia lanceolata (Lamb.)) seedlings to soil warming (4 °C above the control using cable heating). Fine roots were excised to measure the specific respiration rate at a reference temperature of 20 °C (SRR20), and root morphological and chemical traits were measured. Soil warming significantly increased SRR20 by 40% compared with the control, potentially indicating limited acclimation on a short time scale (6 months). However, soil warming increased SRR20 significantly in 2-month-old roots (by 72%) compared with 4- and 6-month-old roots, leading to a steeper decline in SRR20 with root age. This result suggests possible increased nutrient uptake efficiency in young fine roots under warmer temperatures. Soil warming significantly increased specific root length (SRL) but not root tissue nitrogen concentration (RTN). The variation in SRR20 between warming treatments, but not across root ages, was predicted by SRL and RTN individually or together. Our findings conclusively indicate that soil warming increased the respiration cost of young fine roots, which was predicted by adjusting for SRL and RTN, indicating that Chinese fir may adopt a faster fine root turnover strategy to enhance nutrient uptake and soil exploitation under warmer temperatures. Future studies should simultaneously investigate age-related root respiration and nutrient uptake in warming experiments to better understand the effects of warming on root metabolic activity.
Collapse
Affiliation(s)
- Xiaohong Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Shangsan road No.8, Cangshan district, Fuzhou 350007, China
| | - Chensen Xu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Shangsan road No.8, Cangshan district, Fuzhou 350007, China
| | - Decheng Xiong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Shangsan road No.8, Cangshan district, Fuzhou 350007, China
| | - Xiaodong Yao
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Shangsan road No.8, Cangshan district, Fuzhou 350007, China
| | - Tingting Chen
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Shangsan road No.8, Cangshan district, Fuzhou 350007, China
| | - Qi Jiang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Shangsan road No.8, Cangshan district, Fuzhou 350007, China
| | - Linqiao Jia
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Shangsan road No.8, Cangshan district, Fuzhou 350007, China
| | - Ailian Fan
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Shangsan road No.8, Cangshan district, Fuzhou 350007, China
| | - Guangshui Chen
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Shangsan road No.8, Cangshan district, Fuzhou 350007, China
| |
Collapse
|
8
|
Unipartite and bipartite mycorrhizal networks of Abies religiosa forests: Incorporating network theory into applied ecology of conifer species and forest management. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Kwatcho Kengdo S, Peršoh D, Schindlbacher A, Heinzle J, Tian Y, Wanek W, Borken W. Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil. GLOBAL CHANGE BIOLOGY 2022; 28:3441-3458. [PMID: 35253326 DOI: 10.1111/gcb.16155] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Climate warming is predicted to affect temperate forests severely, but the response of fine roots, key to plant nutrition, water uptake, soil carbon, and nutrient cycling is unclear. Understanding how fine roots will respond to increasing temperature is a prerequisite for predicting the functioning of forests in a warmer climate. We studied the response of fine roots and their ectomycorrhizal (EcM) fungal and root-associated bacterial communities to soil warming by 4°C in a mixed spruce-beech forest in the Austrian Limestone Alps after 8 and 14 years of soil warming, respectively. Fine root biomass (FRB) and fine root production were 17% and 128% higher in the warmed plots, respectively, after 14 years. The increase in FRB (13%) was not significant after 8 years of treatment, whereas specific root length, specific root area, and root tip density were significantly higher in warmed plots at both sampling occasions. Soil warming did not affect EcM exploration types and diversity, but changed their community composition, with an increase in the relative abundance of Cenoccocum at 0-10 cm soil depth, a drought-stress-tolerant genus, and an increase in short- and long-distance exploration types like Sebacina and Boletus at 10-20 cm soil depth. Warming increased the root-associated bacterial diversity but did not affect their community composition. Soil warming did not affect nutrient concentrations of fine roots, though we found indications of limited soil phosphorus (P) and potassium (K) availability. Our findings suggest that, in the studied ecosystem, global warming could persistently increase soil carbon inputs due to accelerated fine root growth and turnover, and could simultaneously alter fine root morphology and EcM fungal community composition toward improved nutrient foraging.
Collapse
Affiliation(s)
- Steve Kwatcho Kengdo
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| | - Derek Peršoh
- Department of Geobotany, Ruhr-Universität Bochum, Bochum, Germany
| | - Andreas Schindlbacher
- Department of Forest Ecology and Soil, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Jakob Heinzle
- Department of Forest Ecology and Soil, Federal Research and Training Centre for Forests, Natural Hazards and Landscape-BFW, Vienna, Austria
| | - Ye Tian
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Werner Borken
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
10
|
Morphological Variation in Absorptive Roots in Downy Birch (Betula pubescens) and Norway Spruce (Picea abies) Forests Growing on Drained Peat Soils. FORESTS 2022. [DOI: 10.3390/f13010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peatland drainage based on ditch systems is a widely used forestry management practice in the boreal and hemiboreal forests to improve tree growth. This study investigated the morphological variation in absorptive roots (first- and second-order roots) across the distance gradient from the ditch with four sampling plots (5, 15, 40, and 80 m) in six drained peatland forests dominated by Downy birch and Norway spruce. The dominating tree species had a significant effect on the variation in absorptive root morphological traits. The absorptive roots of birch were thinner with a higher specific root area and length (SRA and SRL), higher branching intensity (BI), and lower root tissue density (RTD) than spruce. The distance from the ditch affected the absorptive root morphological traits (especially SRA and RTD), but this effect was not dependent on tree species and was directionally consistent between birch and spruce. With increased distance from the ditch (from plot 5 to plot 80), the mean SRA increased by about 10% in birch and 5% in spruce; by contrast, the mean RTD decreased by about 10% in both tree species, indicating a potential shift in nutrient foraging. However, soil physical and chemical properties were not dependent on the distance from the ditch. We found a species-specific response in absorptive root morphological traits to soil properties such as peat depth, pH, and temperature. Our results should be considered when evaluating the importance of morphological changes in absorptive roots when trees acclimate to a changing climate.
Collapse
|
11
|
Woods HA, Pincebourde S, Dillon ME, Terblanche JS. Extended phenotypes: buffers or amplifiers of climate change? Trends Ecol Evol 2021; 36:889-898. [PMID: 34147289 DOI: 10.1016/j.tree.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023]
Abstract
Historic approaches to understanding biological responses to climate change have viewed climate as something external that happens to organisms. Organisms, however, at least partially influence their own climate experience by moving within local mosaics of microclimates. Such behaviors are increasingly being incorporated into models of species distributions and climate sensitivity. Less attention has focused on how organisms alter microclimates via extended phenotypes: phenotypes that extend beyond the organismal surface, including structures that are induced or built. We argue that predicting the consequences of climate change for organismal performance and fitness will depend on understanding the expression and consequences of extended phenotypes, the microclimatic niches they generate, and the power of plasticity and evolution to shape those niches.
Collapse
Affiliation(s)
- H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
Wang J, Defrenne C, McCormack ML, Yang L, Tian D, Luo Y, Hou E, Yan T, Li Z, Bu W, Chen Y, Niu S. Fine-root functional trait responses to experimental warming: a global meta-analysis. THE NEW PHYTOLOGIST 2021; 230:1856-1867. [PMID: 33586131 DOI: 10.1111/nph.17279] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/03/2021] [Indexed: 05/12/2023]
Abstract
Whether and how warming alters functional traits of absorptive plant roots remains to be answered across the globe. Tackling this question is crucial to better understanding terrestrial responses to climate change as fine-root traits drive many ecosystem processes. We carried out a detailed synthesis of fine-root trait responses to experimental warming by performing a meta-analysis of 964 paired observations from 177 publications. Warming increased fine-root biomass, production, respiration and nitrogen concentration as well as decreased root carbon : nitrogen ratio and nonstructural carbohydrates. Warming effects on fine-root biomass decreased with greater warming magnitude, especially in short-term experiments. Furthermore, the positive effect of warming on fine-root biomass was strongest in deeper soil horizons and in colder and drier regions. Total fine-root length, morphology, mortality, life span and turnover were unresponsive to warming. Our results highlight the significant changes in fine-root traits in response to warming as well as the importance of warming magnitude and duration in understanding fine-root responses. These changes have strong implications for global soil carbon stocks in a warmer world associated with increased root-derived carbon inputs into deeper soil horizons and increases in fine-root respiration.
Collapse
Affiliation(s)
- Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Biological Sciences, Center for Ecosystem Sciences and Society, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Camille Defrenne
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - M Luke McCormack
- Center for Tree Science, The Morton Arboretum, 4100 Illinois Rt. 53, Lisle, IL, 60532, USA
| | - Lu Yang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiqi Luo
- Department of Biological Sciences, Center for Ecosystem Sciences and Society, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Enqing Hou
- Department of Biological Sciences, Center for Ecosystem Sciences and Society, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Tao Yan
- State Key Laboratory of Grassland and Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhaolei Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Wensheng Bu
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ye Chen
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Spitzer CM, Lindahl B, Wardle DA, Sundqvist MK, Gundale MJ, Fanin N, Kardol P. Root trait-microbial relationships across tundra plant species. THE NEW PHYTOLOGIST 2021; 229:1508-1520. [PMID: 33007155 PMCID: PMC7821200 DOI: 10.1111/nph.16982] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/10/2020] [Indexed: 05/12/2023]
Abstract
Fine roots, and their functional traits, influence associated rhizosphere microorganisms via root exudation and root litter quality. However, little information is known about their relationship with rhizosphere microbial taxa and functional guilds. We investigated the relationships of 11 fine root traits of 20 sub-arctic tundra meadow plant species and soil microbial community composition, using phospholipid fatty acids (PLFAs) and high-throughput sequencing. We primarily focused on the root economics spectrum, as it provides a useful framework to examine plant strategies by integrating the co-ordination of belowground root traits along a resource acquisition-conservation trade-off axis. We found that the chemical axis of the fine root economics spectrum was positively related to fungal to bacterial ratios, but negatively to Gram-positive to Gram-negative bacterial ratios. However, this spectrum was unrelated to the relative abundance of functional guilds of soil fungi. Nevertheless, the relative abundance of arbuscular mycorrhizal fungi was positively correlated to root carbon content, but negatively to the numbers of root forks per root length. Our results suggest that the fine root economics spectrum is important for predicting broader groups of soil microorganisms (i.e. fungi and bacteria), while individual root traits may be more important for predicting soil microbial taxa and functional guilds.
Collapse
Affiliation(s)
- Clydecia M. Spitzer
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesSkogsmarksgrändUmeå901 83Sweden
| | - Björn Lindahl
- Department of Soil and EnvironmentSwedish University of Agricultural SciencesBox 7014Uppsala750 07Sweden
| | - David A. Wardle
- Asian School of the EnvironmentNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Maja K. Sundqvist
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesSkogsmarksgrändUmeå901 83Sweden
| | - Michael J. Gundale
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesSkogsmarksgrändUmeå901 83Sweden
| | - Nicolas Fanin
- INRAEBordeaux Sciences AgroUMR 1391 ISPA71 Avenue Edouard BourlauxVillenave‐d’Ornon CedexCS20032, F33882France
| | - Paul Kardol
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesSkogsmarksgrändUmeå901 83Sweden
| |
Collapse
|
14
|
Seas C, Chaverri P. Response of psychrophilic plant endosymbionts to experimental temperature increase. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201405. [PMID: 33489283 PMCID: PMC7813268 DOI: 10.1098/rsos.201405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Countless uncertainties remain regarding the effects of global warming on biodiversity, including the ability of organisms to adapt and how that will affect obligate symbiotic relationships. The present study aimed to determine the consequences of temperature increase in the adaptation of plant endosymbionts (endophytes) that grow better at low temperatures (psychrophilic). We isolated fungal endophytes from a high-elevation (paramo) endemic plant, Chusquea subtessellata. Initial growth curves were constructed at different temperatures (4-25°C). Next, experiments were carried out in which only the psychrophilic isolates were subjected to repeated increments in temperature. After the experiments, the final growth curves showed significantly slower growth than the initial curves, and some isolates even ceased to grow. While most studies suggest that the distribution of microorganisms will expand as temperatures increase because most of these organisms grow better at 25°C, the results from our experiments demonstrate that psychrophilic fungi were negatively affected by temperature increases. These outcomes raise questions concerning the potential adaptation of beneficial endosymbiotic fungi in the already threatened high-elevation ecosystems. Assessing the consequences of global warming at all trophic levels is urgent because many species on Earth depend on their microbial symbionts for survival.
Collapse
Affiliation(s)
- Carolina Seas
- Vicerrectoría de Investigación, Laboratorio de Ecología Urbana, Universidad Estatal a Distancia (UNED), 2050 San José, Costa Rica
- Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Escuela de Posgrado, Turrialba, Costa Rica
| | - Priscila Chaverri
- Escuela de Biología and Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
15
|
Noh NJ, Crous KY, Li J, Choury Z, Barton CVM, Arndt SK, Reich PB, Tjoelker MG, Pendall E. Does root respiration in Australian rainforest tree seedlings acclimate to experimental warming? TREE PHYSIOLOGY 2020; 40:1192-1204. [PMID: 32348526 DOI: 10.1093/treephys/tpaa056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Plant respiration can acclimate to changing environmental conditions and vary between species as well as biome types, although belowground respiration responses to ongoing climate warming are not well understood. Understanding the thermal acclimation capacity of root respiration (Rroot) in relation to increasing temperatures is therefore critical in elucidating a key uncertainty in plant function in response to warming. However, the degree of temperature acclimation of Rroot in rainforest trees and how root chemical and morphological traits are related to acclimation is unknown. Here we investigated the extent to which respiration of fine roots (≤2 mm) of four tropical and four warm-temperate rainforest tree seedlings differed in response to warmer growth temperatures (control and +6 °C), including temperature sensitivity (Q10) and the degree of acclimation of Rroot. Regardless of biome type, we found no consistent pattern in the short-term temperature responses of Rroot to elevated growth temperature: a significant reduction in the temperature response of Rroot to +6 °C treatment was only observed for a tropical species, Cryptocarya mackinnoniana, whereas the other seven species had either some stimulation or no alteration. Across species, Rroot was positively correlated with root tissue nitrogen concentration (mg g-1), while Q10 was positively correlated with root tissue density (g cm-3). Warming increased root tissue density by 20.8% but did not alter root nitrogen across species. We conclude that thermal acclimation capacity of Rroot to warming is species-specific and suggest that root tissue density is a useful predictor of Rroot and its thermal responses in rainforest tree seedlings.
Collapse
Affiliation(s)
- Nam Jin Noh
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Forest Technology and Management Research Center, National Institute of Forest Science, Pochoen, Gyeonggi 11186, Republic of Korea
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Jinquan Li
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai 200438, China
| | - Zineb Choury
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Stefan K Arndt
- School of Ecosystem and Forest Science, The University of Melbourne, Richmond, VIC 3121, Australia
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
16
|
Calleja-Cabrera J, Boter M, Oñate-Sánchez L, Pernas M. Root Growth Adaptation to Climate Change in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:544. [PMID: 32457782 PMCID: PMC7227386 DOI: 10.3389/fpls.2020.00544] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/09/2020] [Indexed: 05/05/2023]
Abstract
Climate change is threatening crop productivity worldwide and new solutions to adapt crops to these environmental changes are urgently needed. Elevated temperatures driven by climate change affect developmental and physiological plant processes that, ultimately, impact on crop yield and quality. Plant roots are responsible for water and nutrients uptake, but changes in soil temperatures alters this process limiting crop growth. With the predicted variable climatic forecast, the development of an efficient root system better adapted to changing soil and environmental conditions is crucial for enhancing crop productivity. Root traits associated with improved adaptation to rising temperatures are increasingly being analyzed to obtain more suitable crop varieties. In this review, we will summarize the current knowledge about the effect of increasing temperatures on root growth and their impact on crop yield. First, we will describe the main alterations in root architecture that different crops undergo in response to warmer soils. Then, we will outline the main coordinated physiological and metabolic changes taking place in roots and aerial parts that modulate the global response of the plant to increased temperatures. We will discuss on some of the main regulatory mechanisms controlling root adaptation to warmer soils, including the activation of heat and oxidative pathways to prevent damage of root cells and disruption of root growth; the interplay between hormonal regulatory pathways and the global changes on gene expression and protein homeostasis. We will also consider that in the field, increasing temperatures are usually associated with other abiotic and biotic stresses such as drought, salinity, nutrient deficiencies, and pathogen infections. We will present recent advances on how the root system is able to integrate and respond to complex and different stimuli in order to adapt to an increasingly changing environment. Finally, we will discuss the new prospects and challenges in this field as well as the more promising pathways for future research.
Collapse
Affiliation(s)
| | | | | | - M. Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
17
|
Thakur MP. Climate warming and trophic mismatches in terrestrial ecosystems: the green–brown imbalance hypothesis. Biol Lett 2020; 16:20190770. [PMCID: PMC7058950 DOI: 10.1098/rsbl.2019.0770] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/18/2020] [Indexed: 07/22/2024] Open
Abstract
Anthropogenic climate change can give rise to trophic mismatches in food webs owing to differential responses of consumer and resource organisms. However, we know little about the community and ecosystem level consequences of trophic mismatches in food webs. Terrestrial food webs are broadly comprised of two types of food webs: green food webs aboveground and brown food webs belowground between which mass and energy flow mainly via plants. Here, I highlight that the extent of warming-induced trophic mismatches in green and brown food webs differ owing to a greater stasis in brown food webs, which could trigger an imbalance in mass and energy flow between the two food webs. I then discuss the consequences of green–brown imbalance on terrestrial ecosystems and propose research avenues that can help understand the relationships between food webs and ecosystem functions in a warmer world.
Collapse
Affiliation(s)
- Madhav P. Thakur
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
18
|
Voříšková J, Elberling B, Priemé A. Fast response of fungal and prokaryotic communities to climate change manipulation in two contrasting tundra soils. ENVIRONMENTAL MICROBIOME 2019; 14:6. [PMID: 33902718 PMCID: PMC7989089 DOI: 10.1186/s40793-019-0344-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/24/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Climate models predict substantial changes in temperature and precipitation patterns across Arctic regions, including increased winter precipitation as snow in the near future. Soil microorganisms are considered key players in organic matter decomposition and regulation of biogeochemical cycles. However, current knowledge regarding their response to future climate changes is limited. Here, we explore the short-term effect of increased snow cover on soil fungal, bacterial and archaeal communities in two tundra sites with contrasting water regimes in Greenland. In order to assess seasonal variation of microbial communities, we collected soil samples four times during the plant-growing season. RESULTS The analysis revealed that soil microbial communities from two tundra sites differed from each other due to contrasting soil chemical properties. Fungal communities showed higher richness at the dry site whereas richness of prokaryotes was higher at the wet tundra site. We demonstrated that fungal and bacterial communities at both sites were significantly affected by short-term increased snow cover manipulation. Our results showed that fungal community composition was more affected by deeper snow cover compared to prokaryotes. The fungal communities showed changes in both taxonomic and ecological groups in response to climate manipulation. However, the changes were not pronounced at all sampling times which points to the need of multiple sampling in ecosystems where environmental factors show seasonal variation. Further, we showed that effects of increased snow cover were manifested after snow had melted. CONCLUSIONS We demonstrated rapid response of soil fungal and bacterial communities to short-term climate manipulation simulating increased winter precipitation at two tundra sites. In particular, we provide evidence that fungal community composition was more affected by increased snow cover compared to prokaryotes indicating fast adaptability to changing environmental conditions. Since fungi are considered the main decomposers of complex organic matter in terrestrial ecosystems, the stronger response of fungal communities may have implications for organic matter turnover in tundra soils under future climate.
Collapse
Affiliation(s)
- Jana Voříšková
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
- Ecology Department, Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Anders Priemé
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|