1
|
Li Y, Fu C, Hu J, Zeng L, Tu C, Luo Y. Soil Carbon, Nitrogen, and Phosphorus Stoichiometry and Fractions in Blue Carbon Ecosystems: Implications for Carbon Accumulation in Allochthonous-Dominated Habitats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5913-5923. [PMID: 36996086 DOI: 10.1021/acs.est.3c00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Blue carbon ecosystems (BCEs) including mangroves, saltmarshes, and seagrasses are highly efficient for organic carbon (OC) accumulation due to their unique ability to trap high rates of allochthonous substrates. It has been suggested that the magnitude of OC preservation is constrained by nitrogen (N) and phosphorus (P) limitation in response to climate and anthropogenic changes. However, little is known about the connection of soil OC with N-P and their forms in response to allochthonous inputs in BCEs. By analyzing soil OC, N, and P densities of BCEs from 797 sites globally, we find that, in China, where allochthonous OC provides 50-75% of total OC, soil C/P and N/P ratios are 4- to 8-fold lower than their global means, and 23%, 29%, and 20% of buried OC, N, and P are oxidation-resistant fractions that linked with minerals. We estimate that the OC stocks in China should double over the next 40 years under high allochthonous inputs and elevated N/P ratio scenarios during BCE restoration. Allochthonous-dominated BCEs thus have the capacity to enhance refractory and mineral bound organic matter accumulation. Protection and restoration of such BCEs will provide long-term mitigating benefits against sea level rise and greenhouse gas emissions.
Collapse
Affiliation(s)
- Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
| | - Chuancheng Fu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, P. R. China
| | - Jian Hu
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Ministry of Natural Resources, Jiangsu Geological Bureau, Nanjing 210018, P. R. China
| | - Lin Zeng
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, P. R. China
| | - Chen Tu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, P. R. China
| | - Yongming Luo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, P. R. China
| |
Collapse
|
2
|
Nie S, Mo S, Gao T, Yan B, Shen P, Kashif M, Zhang Z, Li J, Jiang C. Coupling effects of nitrate reduction and sulfur oxidation in a subtropical marine mangrove ecosystem with Spartina alterniflora invasion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160930. [PMID: 36526186 DOI: 10.1016/j.scitotenv.2022.160930] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The mangrove ecosystem has a high nitrate reduction capacity, which significantly alleviates severe nitrogen pollution. However, current research on nitrate reduction mechanisms in the mangrove ecosystem is limited. Furthermore, Spartina alterniflora invasion has disrupted the balance of the mangrove ecosystem and the effect of S. alterniflora on nitrate reduction has not yet been fully elucidated. Nitrate reduction was comprehensively investigated in a subtropical mangrove ecosystem in this study, which has been invaded by S. alterniflora for 40 years. Results showed that S. alterniflora significantly increased the relative and absolute abundance of nitrate reduction genes, especially nirS (nitrite reductase), in the mangrove ecosystem. Dissimilatory nitrate reduction to ammonium was the main pathway of nitrate reduction in the mangrove ecosystem. Nitrate reduction was mainly performed by Desulfobacterales and occurred in the shallow layers (0-10 cm) of mangrove sediments. A strong positive correlation was found between nitrate reduction and sulfur oxidation (especially sulfide oxidation), and the sulfide content was significantly positively correlated with the relative abundance of nitrate reduction genes. Moreover, 207 metagenomic assembled genomes (MAGs) were constructed, including 50 MAGs with high numbers (≥ 10) of nitrate reduction genes. This finding indicates that the dominant microbes had strong nitrate reduction potential in mangrove sediments. Our findings highlight the impact of S. alterniflora invasion on nitrate reduction in a subtropical marine mangrove ecosystem. This study provides new insights into our understanding of nitrogen pollution control and contributes to the exploration of new nitrogen-degrading microbes in mangrove ecosystems.
Collapse
Affiliation(s)
- Shiqing Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuming Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Tingwei Gao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| | - Bing Yan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning 530007, China; Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| | - Peihong Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Muhammad Kashif
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zufan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
3
|
Lu X, Zhou X, von Sperber C, Xu Y, Wei Z, Li S, Ruan A. Whether interstitial space features were the main factors affecting sediment microbial community structures in Chaohu Lake. Front Microbiol 2022; 13:1024630. [PMID: 36590403 PMCID: PMC9796575 DOI: 10.3389/fmicb.2022.1024630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Sediments cover a majority of Earth's surface and are essential for global biogeochemical cycles. The effects of sediment physiochemical features on microbial community structures have attracted attention in recent years. However, the question of whether the interstitial space has significant effects on microbial community structures in submerged sediments remains unclear. In this study, based on identified OTUs (operational taxonomic units), correlation analysis, RDA analysis, and Permanova analysis were applied into investigating the effects of interstitial space volume, interstitial gas space, volumetric water content, sediment particle features (average size and evenness), and sediment depth on microbial community structures in different sedimentation areas of Chaohu Lake (Anhui Province, China). Our results indicated that sediment depth was the closest one to the main environmental gradient. The destruction effects of gas space on sediment structures can physically affect the similarity of the whole microbial community in all layers in river dominated sedimentation area (where methane emits actively). However, including gas space, none of the five interstitial space parameters were significant with accounting for the microbial community structures in a sediment layer. Thus, except for the happening of active physical destruction on sediment structures (for example, methane ebullition), sediment interstitial space parameters were ineffective for affecting microbial community structures in all sedimentation areas.
Collapse
Affiliation(s)
- Xiang Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China,College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Xiaotian Zhou
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China,College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | | | - Yaofei Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China,College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Zhipeng Wei
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China,College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Siyan Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China,College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Aidong Ruan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China,College of Hydrology and Water Resources, Hohai University, Nanjing, China,*Correspondence: Aidong Ruan,
| |
Collapse
|
4
|
Guimarães Sampaio JA, Gonçalves Reis CR, Cunha-Lignon M, Nardoto GB, Salemi LF. Plant invasion affects vegetation structure and sediment nitrogen stocks in subtropical mangroves. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105506. [PMID: 34678680 DOI: 10.1016/j.marenvres.2021.105506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Plant invasion can primarily affect the structure and functioning of terrestrial and aquatic ecosystems. Although there is evidence that plant invasion can modify organic matter dynamics in mangroves, it is uncertain whether and to which extent these changes can affect carbon (C) and nitrogen (N) dynamics in the sediment-plant system. Here, we measured: (i) the structure of native vegetation and C and N in the sediment-plant system in subtropical mangroves subjected to aquatic macrophytes invasion in southeastern Brazil. We answered the following questions: i) Do invaded mangroves differ in aboveground biomass compared to non-invaded mangroves?; ii) Are there C4 macrophytes in these sites? iii) What are the C and N stocks in sediment of invaded mangroves? We quantified C and N concentrations and the isotopic signature of such elements (δ13C and δ15N) in the sediment-plant system, the C and N stocks in the sediment (0-20 cm depth), and mangrove aboveground biomass. Mangrove aboveground biomass was lower at invaded compared to non-invaded sites reflecting the species displacement in invaded sites. The sediment at invaded mangroves did not significantly contribute to C4 sources because of the large predominance of both mangrove and invasive C3 plants. While sediment C stocks were similar among study sites (∼47 Mg ha-1), N stocks were lower at invaded (2.7 Mg ha-1) comparing to non-invaded (3.2 Mg ha-1) mangroves. The lower N stocks at invaded sites can reflect the higher leaf N concentrations and lower C:N ratios of invasive plants compared to mangroves. Thus, the effects of macrophytes invasion in subtropical mangroves are more apparent for vegetation structure and N stocks. C stocks alteration is expected the be detectable in the future.
Collapse
Affiliation(s)
- Jéssica Airisse Guimarães Sampaio
- Núcleo de Estudos e Pesquisas Ambientais e Limnológicas - Programa de Pós-Graduação Em Ciências Ambientais, Área Universitária 1, Vila Nossa Senhora de Fátima, Campus de Planaltina, Universidade de Brasília, 73340-710, Planaltina, Distrito Federal, Brazil
| | - Carla Roberta Gonçalves Reis
- Programa de Pós-Graduação Em Ecologia, Instituto de Ciências Biológicas, Campus Darcy Ribeiro, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brazil
| | - Marília Cunha-Lignon
- Campus Experimental de Registro, Universidade Estadual Paulista, 11900-000, Registro, São Paulo, Brazil
| | - Gabriela Bielefeld Nardoto
- Núcleo de Estudos e Pesquisas Ambientais e Limnológicas - Programa de Pós-Graduação Em Ciências Ambientais, Área Universitária 1, Vila Nossa Senhora de Fátima, Campus de Planaltina, Universidade de Brasília, 73340-710, Planaltina, Distrito Federal, Brazil; Programa de Pós-Graduação Em Ecologia, Instituto de Ciências Biológicas, Campus Darcy Ribeiro, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brazil
| | - Luiz Felippe Salemi
- Núcleo de Estudos e Pesquisas Ambientais e Limnológicas - Programa de Pós-Graduação Em Ciências Ambientais, Área Universitária 1, Vila Nossa Senhora de Fátima, Campus de Planaltina, Universidade de Brasília, 73340-710, Planaltina, Distrito Federal, Brazil.
| |
Collapse
|
5
|
Lugendo BR, Kimirei IA. Anthropogenic nitrogen pollution in mangrove ecosystems along Dar es Salaam and Bagamoyo coasts in Tanzania. MARINE POLLUTION BULLETIN 2021; 168:112415. [PMID: 33930646 DOI: 10.1016/j.marpolbul.2021.112415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Mangroves are among the most productive coastal ecosystems; however, they are prone to anthropogenic pollution due to their land-sea interface position. We used stable nitrogen isotopes and spectrophotometric nitrate analysis to study the anthropogenic pollution in five mangrove ecosystems in Tanzania, including two polluted (Mzinga and Kizinga), one moderate (Kunduchi) and non-polluted (Mbegani and Ras Dege) sites. Also, we tested the suitability of mangrove leaves, roots, sediment, and gastropod as indicators of anthropogenic nitrogen pollution using stable δ15N isotope analysis. Results revealed higher than 10‰ δ15N values in all analysed components and the highest nitrate concentrations of 16.44 mg L-1 in the interstitial waters at the polluted sites, indicating anthropogenic nitrogen inputs. The δ15N enrichment increased in the order: non-polluted < moderate < polluted. The polluted sites are fed by freshwater creeks and probably receive high loads of domestic sewage from the surrounding communities, industries, and agricultural effluents. Therefore, to protect mangrove ecosystems, proper waste and wastewater management upstream are recommended.
Collapse
Affiliation(s)
- Blandina R Lugendo
- School of Aquatic Sciences and Fisheries Technology (SoAF), University of Dar es Salaam P. O. Box 60091, Dar es Salaam, Tanzania; Tanzania Fisheries Research Institute (TAFIRI), P.O. Box 9750, Dar es Salaam, Tanzania.
| | - Ismael A Kimirei
- School of Aquatic Sciences and Fisheries Technology (SoAF), University of Dar es Salaam P. O. Box 60091, Dar es Salaam, Tanzania; Tanzania Fisheries Research Institute (TAFIRI), P.O. Box 9750, Dar es Salaam, Tanzania.
| |
Collapse
|
6
|
Nie S, Zhang Z, Mo S, Li J, He S, Kashif M, Liang Z, Shen P, Yan B, Jiang C. Desulfobacterales stimulates nitrate reduction in the mangrove ecosystem of a subtropical gulf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144562. [PMID: 33460836 DOI: 10.1016/j.scitotenv.2020.144562] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The amount of nitrogen compounds discharged into the natural environment has increased drastically due to frequent human activities and led to worsening pollution. The mangrove ecosystem can remove nitrogen pollution, in this regard, few studies had focused on the relationship among nitrogen cycling genes, environmental factors, and taxonomic composition. In this study, shotgun metagenomic sequencing and quantitative polymerase chain reaction were used to understand the nitrogen cycle in the subtropical mangrove ecosystem in the Beibu Gulf of China. Eight nitrogen cycling pathways were annotated. Nitrogen metabolism activities were significantly higher in the wet season than those in the dry season. The most abundant genes were those related to the synthesis and degradation of organic nitrogen, followed by the genes involved in nitrate reduction (denitrification, dissimilation/assimilation nitrate reduction). Furthermore, dissimilation nitrate reduction was the main nitrate reduction pathway. Desulfobacterales plays an important role in nitrogen cycling and contributes 12% of the genes of nitrogen pathways on average; as such, a strong coupling relationship exists among nitrogen cycling, sulfur cycling, and carbon cycling in the mangrove ecosystem. Nitrogen pollution in the mangrove wetland can be efficiently alleviated by nitrate reduction of Desulfobacterales. Nevertheless, only 50% of genes can be matched among the known species, suggesting that many unknown microorganisms in the mangrove ecosystem can perform nitrogen cycling. Total phosphorus, available iron, and total organic carbon are the key environmental factors that influence the distribution of nitrogen cycling genes, related pathways, and the taxonomic composition. Our study clearly illustrates how the mangrove ecosystem mitigates nitrogen pollution through Desulfobacterales. This finding could provide a research reference for the whole nitrogen cycling in the mangrove ecosystem.
Collapse
Affiliation(s)
- Shiqing Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zufan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuming Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Sheng He
- Guangxi Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530033, China
| | - Muhammad Kashif
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhengwu Liang
- Guangxi Liyuanbao Science and Technology Co., Ltd, Nanning 530033, China
| | - Peihong Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Bing Yan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China.
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Reis CRG, Pacheco FS, Reed SC, Tejada G, Nardoto GB, Forti MC, Ometto JP. Biological nitrogen fixation across major biomes in Latin America: Patterns and global change effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140998. [PMID: 32763600 DOI: 10.1016/j.scitotenv.2020.140998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Biological nitrogen fixation (BNF) supports terrestrial primary productivity and plays key roles in mediating human-induced changes in global nitrogen (N) and carbon cycling. However, there are still critical uncertainties in our understanding of the amount of BNF occurring across terrestrial ecosystems, and of how terrestrial BNF will respond to global change. We synthesized BNF data from Latin America, a region reported to sustain some of the highest BNF rates on Earth, but that is underrepresented in previous data syntheses. We used meta-analysis and modeling approaches to estimate BNF rates across Latin America's major biomes and to evaluate the potential effects of increased N deposition and land-use change on these rates. Unmanaged tropical and subtropical moist forests sustained observed and predicted total BNF rates of 10 ± 1 and 14 ± 1 kg N ha-1 y-1, respectively, supporting the hypothesis that these forests sustain lower BNF rates than previously thought. Free-living BNF accounted for two-thirds of the total BNF in these forests. Despite an average 30% reduction of free-living BNF in response to experimental N-addition, our results suggest free-living BNF rate responses to current and projected N deposition across tropical and subtropical moist forests are small. In contrast, the conversion of unmanaged ecosystems to crop and pasture lands increased BNF rates across all terrestrial biomes, mostly in savannas, grasslands, and dry forests, increasing BNF rates 2-fold. The information obtained here provides a more comprehensive understanding of BNF patterns for Latin America.
Collapse
Affiliation(s)
- Carla R G Reis
- Center for Earth System Science, National Institute for Space Research (INPE), Av. dos Astronautas 1758, São José dos Campos, São Paulo 12227-010, Brazil.
| | - Felipe S Pacheco
- Center for Earth System Science, National Institute for Space Research (INPE), Av. dos Astronautas 1758, São José dos Campos, São Paulo 12227-010, Brazil
| | - Sasha C Reed
- U.S. Geological Survey, Southwest Biological Science Center, 2290, S.W. Resource Blvd, Moab, UT 84532, USA
| | - Graciela Tejada
- Center for Earth System Science, National Institute for Space Research (INPE), Av. dos Astronautas 1758, São José dos Campos, São Paulo 12227-010, Brazil
| | - Gabriela B Nardoto
- Department of Ecology, Campus Darcy Ribeiro, University of Brasilia, Brasilia, Federal District 70910-900, Brazil
| | - Maria C Forti
- Center for Earth System Science, National Institute for Space Research (INPE), Av. dos Astronautas 1758, São José dos Campos, São Paulo 12227-010, Brazil
| | - Jean P Ometto
- Center for Earth System Science, National Institute for Space Research (INPE), Av. dos Astronautas 1758, São José dos Campos, São Paulo 12227-010, Brazil
| |
Collapse
|
8
|
Sun H, He Z, Zhang M, Yen L, Cao Y, Hu Z, Peng Y, Lee SY. Spatial variation of soil properties impacted by aquaculture effluent in a small-scale mangrove. MARINE POLLUTION BULLETIN 2020; 160:111511. [PMID: 32861934 DOI: 10.1016/j.marpolbul.2020.111511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Small-scale mangroves serve ecological functions similar to large-scale mangroves regarding biological conservation, environmental purification, and supporting biogeochemical processes. The rising aquaculture neighboring mangroves results in their serving as an important sink for massive nutrients and pollutants from aquaculture effluent. We assessed how long-term aquaculture effluent discharge influenced the soil properties of a mangrove-tidal flat continuum using field survey and geostatistics. Common soil physical-chemical properties presented significant spatial variability. Continued aquaculture effluent discharge caused a significant cumulation of soil total organic carbon (SOC) (64.13 g·kg-1), total nitrogen (TN) (2.44 g·kg-1) and total phosphorus (TP) (1.12 g·kg-1) in the mangrove soil, which were as 2-3 times as those on the mudflat. Most of the soil properties changed significantly with increasing distance from the effluent outlet along a tidal channel, and the maximum concentrations of SOC, TN and TP all occurred at 50 m away from the outlet. The results of principal component analysis indicated that aquaculture effluent significantly affected the spatial pattern of soil properties along the mangrove-tidal flat continuum. Continued aquaculture effluent input rendered extensive accumulation of SOC, TN and TP in the mangroves. The spatial heterogeneity of mangrove is the key driver to process the nutrient input spatially differently.
Collapse
Affiliation(s)
- Huaye Sun
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ziying He
- School of Marine Science, Sun Yat-Sen University, Zhuhai 519000, China
| | - Min Zhang
- Guangdong Institute of Applied Biological Resources, Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangzhou 510260, China
| | - Lingwei Yen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Sun Yat-Sen University, Zhuhai 519000, China
| | - Zhan Hu
- School of Marine Science, Sun Yat-Sen University, Zhuhai 519000, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Sun Yat-Sen University, Zhuhai 519000, China
| | - Yisheng Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Sun Yat-Sen University, Zhuhai 519000, China.
| | - Shing Yip Lee
- Simon F S Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|