1
|
McDonough AM, Watmough SA. Interactive effects of precipitation and above canopy nitrogen deposition on understorey vascular plants in a jack pine (Pinus banksiana) forest in northern Alberta, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158708. [PMID: 36099949 DOI: 10.1016/j.scitotenv.2022.158708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Elevated nitrogen (N) deposition in the bituminous sands region of northern Alberta, Canada is localized but expected to increase over time. Here we seek to determine the effects of above canopy N deposition on understorey vascular plants in a jack pine (Pinus banksiana) stand in a five-year experimental study. Aqueous N (ammonium nitrate) was applied four times annually (May through October) via helicopter above the canopy between 2011 and 2015 across a narrow but environmentally relevant N deposition gradient (0, 5, 10, 15, 20 and 25 kg N ha-1 yr-1). Changes in vascular plant species richness, diversity and total vascular cover were best explained by throughfall water flux, but the positive responses to precipitation decreased with increasing N application. Arctostaphylos uva-ursi and Maianthemum canadense showed positive cover increases in wet years; however, the positive cover expansion at ≥5 kg N ha-1 yr-1 treatments was suppressed relative to controls. Total cover expansion was muted in low precipitation years in treatments ≥10 kg N ha-1 yr-1. In contrast, Vaccinium vitis-idaea cover changes ≥10 kg N ha-1 yr-1 were consistently negative. There were no differences in soil net N mineralization rates, plant foliar N or NO3- leaching among treatments. We conjecture the extensive moss/lichen layer of the forest floor that accumulates most of incoming N in throughfall allows them to outcompete vascular plants for water during higher precipitation years, effectively reducing vascular cover expansion relative to controls. This work suggests the response of vascular plants in xeric jack pine ecosystems may interact with climate and these interactions should be considered in risk assessment studies.
Collapse
Affiliation(s)
- Andrew M McDonough
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Etobicoke, Ontario MP9 3V6, Canada.
| | - Shaun A Watmough
- School of the Environment, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| |
Collapse
|
2
|
Jiang X, Song M, Qiao Y, Liu M, Ma L, Fu S. Long-term water use efficiency and non-structural carbohydrates of dominant tree species in response to nitrogen and water additions in a warm temperate forest. FRONTIERS IN PLANT SCIENCE 2022; 13:1025162. [PMID: 36420022 PMCID: PMC9676439 DOI: 10.3389/fpls.2022.1025162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) deposition tends to accompany precipitation in temperate forests, and vegetation productivity is mostly controlled by water and N availability. Many studies showed that tree species response to precipitation or N deposition alone influences, while the N deposition and precipitation interactive effects on the traits of tree physiology, especially in non-structural carbohydrates (NSCs) and long-term water use efficiency (WUE), are still unclear. In this study, we measured carbon stable isotope (δ13C), total soluble sugar and starch content, total phenols, and other physiological traits (e.g., leaf C:N:P stoichiometry, lignin, and cellulose content) of two dominant tree species (Quercus variabilis Blume and Liquidambar formosana Hance) under canopy-simulated N deposition and precipitation addition to analyze the changes of long-term WUE and NSC contents and to explain the response strategies of dominant trees to abiotic environmental changes. This study showed that N deposition decreased the root NSC concentrations of L. formosana and the leaf lignin content of Q. variabilis. The increased precipitation showed a negative effect on specific leaf area (SLA) and a positive effect on leaf WUE of Q. variabilis, while it increased the leaf C and N content and decreased the leaf cellulose content of L. formosana. The nitrogen-water interaction reduced the leaf lignin and total phenol content of Q. variabilis and decreased the leaf total phenol content of L. formosana, but it increased the leaf C and N content of L. formosana. Moreover, the response of L. formosana to the nitrogen-water interaction was greater than that of Q. variabilis, highlighting the differences between the two dominant tree species. The results showed that N deposition and precipitation obviously affected the tree growth strategies by affecting the NSC contents and long-term WUE. Canopy-simulated N deposition and precipitation provide a new insight into the effect of the nitrogen-water interaction on tree growth traits in a temperate forest ecosystem, enabling a better prediction of the response of dominant tree species to global change.
Collapse
Affiliation(s)
- Xiyan Jiang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Mengya Song
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Yaqi Qiao
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Mengzhou Liu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Lei Ma
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Shenglei Fu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, College of Geography and Environmental Science, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Li R, Yu D, Zhang Y, Han J, Zhang W, Yang Q, Gessler A, Li MH, Xu M, Guan X, Chen L, Wang Q, Wang S. Investment of needle nitrogen to photosynthesis controls the nonlinear productivity response of young Chinese fir trees to nitrogen deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156537. [PMID: 35679936 DOI: 10.1016/j.scitotenv.2022.156537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Plant carbon (C) assimilation is expected to nonlinearly increase with continuously increasing nitrogen (N) deposition, causing a N saturation threshold for productivity. However, the response of plant productivity to N deposition rates and further the N saturation threshold still await comprehensive quantization for forest ecosystem. Here, we tested the effect of N addition on aboveground net primary productivity (ANPP) of three-year old Chinese fir (Cunninghamia lanceolata) trees by adding N at 0, 5.6, 11.2, 22.4, and 44.8 g N m-2 yr-1 for 2.5 years. The N saturation threshold was estimated based on a quadratic-plus-plateau model. Results showed that ANPP transitioned from an increasing stage with increasing N addition rate to a plateaued stage at an N rate of 16.3 g N m-2 yr-1. The response of ANPP to N addition rates was well explained by the net photosynthetic rates of needles. Results from the dual isotope measurement [simultaneous determination of needle stable carbon (δ13C) and oxygen (δ18O) isotopes] indicated that the photosynthetic capacity, rather than the stomatal conductance, mediated the response of photosynthesis and ANPP of the young Chinese fir trees to N addition. Accordingly, the amount of needle N partitioning to water-soluble fraction, which is associated with the photosynthetic capacity, also responded to N enrichment with a nonlinear increase. Our study will contribute to a more accurate prediction on the influence of N deposition on C cycles in Chinese fir plantations.
Collapse
Affiliation(s)
- Renshan Li
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Life Science Department, Luoyang Normal University, Luoyang 471934, China
| | - Dan Yu
- Life Science Department, Luoyang Normal University, Luoyang 471934, China
| | - Yankuan Zhang
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Han
- Life Science Department, Luoyang Normal University, Luoyang 471934, China
| | - Weidong Zhang
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China.
| | - Qingpeng Yang
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China.
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Mai-He Li
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Forest Dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Ming Xu
- BNU-HKUST Laboratory for Green Innovation, Beijing Normal University, Zhuhai 519085, China
| | - Xin Guan
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China
| | - Longchi Chen
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China
| | - Qingkui Wang
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China
| | - Silong Wang
- Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China; Huitong National Research Station of Forest Ecosystem, Huitong 418307, China
| |
Collapse
|