1
|
Younes S, Elkahlout R, Kilani H, Okashah S, Sharshani HA, Rezoug Z, Zayed H, Al-Dewik N. Spectrum of genetic variants associated with maple syrup urine disease in the Middle East, North Africa, and Türkiye (MENAT): a systematic review. BMC Med Genomics 2025; 18:49. [PMID: 40082840 PMCID: PMC11905697 DOI: 10.1186/s12920-025-02083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/02/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Maple syrup urine disease (MSUD) is a hereditary metabolic disorder caused by a deficiency in the branched-chain α-keto acid dehydrogenase (BCKD) enzymatic complex. The Middle East and North Africa, and Türkiye (MENAT) region has witnessed a significant rise in the prevalence of MSUD due to high rates of consanguinity. Despite numerous genetic association studies, the complex relationships between genotype and phenotype in MSUD remain elusive. AIM This study aimed to systematically review the variants significantly associated with MSUD in the MENAT region. METHODS We systematically searched four literature databases (PubMed, Scopus, Web of Science, and Science Direct) from inception until December 2023 to gather all reported genetic data pertaining to MSUD in the MENAT region. Quality assessment and data extraction were diligently performed by a team of six investigators. RESULTS A total of 16 studies, involving patients, were included in this systematic review. Among them, 211 patients presented with 105 variants located within genes known to be associated with MSUD. The majority of the identified MSUD variants were found in BCKDHA (38%), followed by BCKDHB (38%), DBT (23%), and PPM1K (1%). Notably, 77% of the captured variants were unique to the MENAT region. CONCLUSION Our systematic review reveals a distinctive genetic and clinical susceptibility profile of MSUD among individuals from the MENAT region. These findings highlight the importance of understanding the specific genetic landscape of MSUD in this population. Further research is warranted to elucidate the complex genotype-phenotype relationships in MSUD in the MENAT region.
Collapse
Affiliation(s)
- Salma Younes
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Razan Elkahlout
- Department of Research, Women Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Houda Kilani
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Sarah Okashah
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Hussain Al Sharshani
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Zoulikha Rezoug
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar.
| | - Nader Al-Dewik
- Department of Research, Women Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha, Qatar.
| |
Collapse
|
2
|
Tresbach RH, Sperb-Ludwig F, Ligabue-Braun R, Bitencourt FHD, Tonon T, Souza CFMD, Poswar FDO, Leite MEDQ, Amorim T, Porta G, Seda Neto J, Miura IK, Steiner CE, Martins AM, Pessoa ALS, Ribeiro EM, Schwartz IVD. Maple syrup urine disease diagnosis in Brazilian patients by massive parallel sequencing. Mol Genet Metab 2024; 143:108569. [PMID: 39270351 DOI: 10.1016/j.ymgme.2024.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Biallelic pathogenic variants cause maple syrup urine disease (MSUD) in one of the branched-chain α-keto acid dehydrogenase (BCKDH) complex genes (BCKDHA, BCKDHB, DBT, DLD, and PPM1K) leading to the accumulation of leucine, isoleucine, and valine. This study aimed to perform a molecular diagnosis of Brazilian patients with MSUD using gene panels and massive parallel sequencing. Eighteen Brazilian patients with a biochemical diagnosis of MSUD were analyzed by massive parallel sequencing in the Ion PGM Torrent Server using a gene panel with the BCKDHA, BCKDHB, and DBT genes. The American College of Medical Genetics and Genomics guidelines were used to determine variant pathogenicity. Thirteen patients had both variants found by massive parallel sequencing, whereas 3 patients had only one variant found. In 2 patients, the variants were not found by this analysis. These 5 patients required additional Sanger sequencing to confirm their genotype. Twenty-five pathogenic variants were identified in the 3 MSUD-related genes (BCKDHA, BCKDHB, and DBT). Most variants were present in the BCKDHB gene, and no common variants were found. Nine novel variants were observed: c.922 A > G, c.964C > A, and c.1237 T > C in the BCKDHA gene; and c.80_90dup, c.384delA, c.478 A > T, c.528C > G, c.977 T > C, and c.1039-2 A > G in the BCKDHB gene. All novel variants were classified as pathogenic. Molecular modeling of the novel variants indicated that the binding of monomers was affected in the BCKDH complex tetramer, which could lead to a change in the stability and activity of the enzyme. Massive parallel sequencing with targeted gene panels seems to be a cost-effective method that can provide a molecular diagnosis of MSUD.
Collapse
Affiliation(s)
- Rafael Hencke Tresbach
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Sperb-Ludwig
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Biological Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Fernanda Hendges de Bitencourt
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tássia Tonon
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carolina Fischinger Moura de Souza
- Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabiano de Oliveira Poswar
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria Efigênia de Queiroz Leite
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Tatiana Amorim
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Gilda Porta
- Pedro de Alcântara Children's Institute - Hospital das Clínicas, Medical School, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - João Seda Neto
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Irene Kazumi Miura
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Carlos Eduardo Steiner
- Department of Translational Medicine, School of Medical Sciences, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Ana Maria Martins
- Reference Center for Inborn Errors of Metabolism, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - André Luiz Santos Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, CE, Brazil; Department of Pediatrics, Universidade Estadual do Ceará (UECE), Fortaleza, CE, Brazil
| | | | - Ida Vanessa Doederlein Schwartz
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; InRaras, National Institute of Rare Diseases, Brazil
| |
Collapse
|
3
|
Soriano-Sexto A, Gallego D, Leal F, Castejón-Fernández N, Navarrete R, Alcaide P, Couce ML, Martín-Hernández E, Quijada-Fraile P, Peña-Quintana L, Yahyaoui R, Correcher P, Ugarte M, Rodríguez-Pombo P, Pérez B. Identification of Clinical Variants beyond the Exome in Inborn Errors of Metabolism. Int J Mol Sci 2022; 23:ijms232112850. [PMID: 36361642 PMCID: PMC9654865 DOI: 10.3390/ijms232112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022] Open
Abstract
Inborn errors of metabolism (IEM) constitute a huge group of rare diseases affecting 1 in every 1000 newborns. Next-generation sequencing has transformed the diagnosis of IEM, leading to its proposed use as a second-tier technology for confirming cases detected by clinical/biochemical studies or newborn screening. The diagnosis rate is, however, still not 100%. This paper reports the use of a personalized multi-omics (metabolomic, genomic and transcriptomic) pipeline plus functional genomics to aid in the genetic diagnosis of six unsolved cases, with a clinical and/or biochemical diagnosis of galactosemia, mucopolysaccharidosis type I (MPS I), maple syrup urine disease (MSUD), hyperphenylalaninemia (HPA), citrullinemia, or urea cycle deficiency. Eight novel variants in six genes were identified: six (four of them deep intronic) located in GALE, IDUA, PTS, ASS1 and OTC, all affecting the splicing process, and two located in the promoters of IDUA and PTS, thus affecting these genes’ expression. All the new variants were subjected to functional analysis to verify their pathogenic effects. This work underscores how the combination of different omics technologies and functional analysis can solve elusive cases in clinical practice.
Collapse
Affiliation(s)
- Alejandro Soriano-Sexto
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Diana Gallego
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Fátima Leal
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Natalia Castejón-Fernández
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Rosa Navarrete
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Patricia Alcaide
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - María L. Couce
- Unit for the Diagnosis and Treatment of Congenital Metabolic Diseases, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, University of Santiago de Compostela, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| | - Elena Martín-Hernández
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Servicio de Pediatría, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) para Enfermedades Metabólicas Hereditarias, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Pilar Quijada-Fraile
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Servicio de Pediatría, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) para Enfermedades Metabólicas Hereditarias, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Luis Peña-Quintana
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Complejo Hospitalario Universitario Insular Materno-Infantil (CHUIMI), Universidad de Las Palmas de Gran Canaria, Asociación Canaria para La Investigación Pediátrica, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN) ISCIII, 35016 Gran Canaria, Spain
| | - Raquel Yahyaoui
- Laboratory of Metabolic Disorders and Newborn Screening, Institute of Biomedical Research in Málaga (IBIMA-Plafatorma BIONAND), IBIMA-RARE, Málaga Regional University Hospital, 29010 Málaga, Spain
| | - Patricia Correcher
- Nutrition and Metabolophaties Unit, Hospital Universitario La Fe, 46026 Valencia, Spain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Pilar Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, 28049 Madrid, Spain
- Correspondence:
| |
Collapse
|
4
|
Yang J, Xiu J, Sun Y, Liu F, Shang X, Li G. Three novel mutations of the BCKDHA, BCKDHB and DBT genes in Chinese children with maple syrup urine disease. J Pediatr Endocrinol Metab 2022; 35:303-312. [PMID: 34883003 DOI: 10.1515/jpem-2021-0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/17/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Maple syrup urine disease (MSUD) is a rare metabolic autosomal recessive disorder caused by deficiency of the branched-chain α-ketoacid dehydrogenase complex. Mutations in the BCKDHA, BCKDHB and DBT genes are responsible for MSUD. This study presents the clinical and molecular characterizations of four MSUD patients. METHODS Clinical data of patients were retrospectively analyzed, and genetic mutations were identified by whole-exome sequencing. CLUSTALX was employed to analyzed cross-species conservation of the mutant amino acid. The impact of the mutations was analyzed with PolyPhen-2 software. The I-TASSER website and PyMOL software were used to predict the protein three-position structure of the novel mutations carried by the patients. RESULTS Vomiting, irritability, feeding difficulties, seizures, dyspnoea, lethargy and coma were the main clinical presentations of MSUD. Cranial MRI showed abnormal symmetrical signals in accordance with the presentation of inherited metabolic encephalopathy. Seven mutations were detected in four patients, including three novel pathogenic mutations in the BCKDHA (c.656C>A), BCKDHB (deletion of a single-copy of BCKDHB) and DBT (c.1219dup) genes. Structural changes were compatible with the observed phenotypes. CONCLUSIONS Different types of MSUD can display heterogeneous clinical manifestations. Exhaustive molecular studies are necessary for a proper differential diagnosis. The newly identified mutation will play a key role in the prenatal diagnosis of MSUD in the future.
Collapse
Affiliation(s)
- Jianmei Yang
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianjun Xiu
- Radiology Department, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Sun
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fan Liu
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaohong Shang
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guimei Li
- Department of Pediatric Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Molina Romero M, Yoldi Chaure A, Gañán Parra M, Navas Bastida P, del Pico Sánchez JL, Vaquero Argüelles Á, de la Fuente Vaquero P, Ramírez López JP, Castilla Alcalá JA. Probability of high-risk genetic matching with oocyte and semen donors: complete gene analysis or genotyping test? J Assist Reprod Genet 2022; 39:341-355. [PMID: 35091964 PMCID: PMC8956772 DOI: 10.1007/s10815-021-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To estimate the probability of high-risk genetic matching when assisted reproductive techniques (ART) are applied with double gamete donation, following an NGS carrier test based on a complete study of the genes concerned. We then determine the results that would have been obtained if the genotyping tests most widely used in Spanish gamete banks had been applied. METHODS In this descriptive observational study, 1818 gamete donors were characterised by NGS. The pathogenic variants detected were analysed to estimate the probability of high-risk genetic matching and to determine the results that would have been obtained if the three most commonly used genotyping tests in ART had been applied. RESULTS The probability of high-risk genetic matching with gamete donation, screened by NGS and complete gene analysis, was 5.5%, versus the 0.6-2.7% that would have been obtained with the genotyping test. A total of 1741 variants were detected, including 607 different variants, of which only 22.6% would have been detected by all three genotyping tests considered and 44.7% of which would not have been detected by any of these tests. CONCLUSION Our study highlights the considerable heterogeneity of the genotyping tests, which present significant differences in their ability to detect pathogenic variants. The complete study of the genes by NGS considerably reduces reproductive risks when genetic matching is performed with gamete donors. Accordingly, we recommend that carrier screening in gamete donors be carried out using NGS and a complete study with nontargeted analysis of the variants of the screened genes.
Collapse
Affiliation(s)
- Marta Molina Romero
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain
| | | | | | | | | | | | | | | | - José Antonio Castilla Alcalá
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain ,U. Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain ,Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| |
Collapse
|
6
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Margutti AVB, Silva WA, Garcia DF, de Molfetta GA, Marques AA, Amorim T, Prazeres VMG, Boy da Silva RT, Miura IK, Seda Neto J, Santos EDS, Santos MLSF, Lourenço CM, Tonon T, Sperb-Ludwig F, de Souza CFM, Schwartz IVD, Camelo JS. Maple syrup urine disease in Brazilian patients: variants and clinical phenotype heterogeneity. Orphanet J Rare Dis 2020; 15:309. [PMID: 33131499 PMCID: PMC7603684 DOI: 10.1186/s13023-020-01590-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/15/2020] [Indexed: 11/14/2022] Open
Abstract
Background Maple syrup urine disease (MSUD) is an autosomal recessive inherited metabolic disease caused by deficient activity of the branched-chain α-keto acid dehydrogenase (BCKD) enzymatic complex. BCKD is a mitochondrial complex encoded by BCKDHA, BCKDHB, DBT, and DLD genes. MSUD is predominantly caused by Variants in BCKDHA, BCKDHB, and DBT genes encoding the E1α, E1β, and E2 subunits of BCKD complex, respectively. The aim of this study was to characterize the genetic basis of MSUD by identifying the point variants in BCKDHA, BCKDHB, and DBT genes in a cohort of Brazilian MSUD patients and to describe their phenotypic heterogeneity. It is a descriptive cross-sectional study with 21 MSUD patients involving molecular genotyping by Sanger sequencing. Results Eight new variants predicted as pathogenic were found between 30 variants (damaging and non-damaging) identified in the 21 patients analyzed: one in the BCKDHA gene (p.Tyr120Ter); five in the BCKDHB gene (p.Gly131Val, p.Glu146Glnfs * 13, p.Phe149Cysfs * 9, p.Cys207Phe, and p.Lys211Asn); and two in the DBT gene (p.Glu148Ter and p.Glu417Val). Seventeen pathogenic variants were previously described and five variants showed no pathogenicity according to in silico analysis.
Conclusion Given that most of the patients received late diagnoses, the study results do not allow us to state that the molecular features of MSUD variant phenotypes are predictive of clinical severity.
Collapse
Affiliation(s)
- Ana Vitoria Barban Margutti
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av., 3900 - HC Criança - off D506, Ribeirão Prêto, SP, 14049-900, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute of Science and Technology in Stem Cell, and Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil.,Center for Medical Genomics at Clinics Hospital of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniel Fantozzi Garcia
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute of Science and Technology in Stem Cell, and Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Greice Andreotti de Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,National Institute of Science and Technology in Stem Cell, and Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil.,Center for Medical Genomics at Clinics Hospital of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adriana Aparecida Marques
- National Institute of Science and Technology in Stem Cell, and Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Tatiana Amorim
- Associação de Pais e Amigos dos Excepcionais of Salvador, Salvador, BA, Brazil.,Department of Life Sciences, Bahia State University, Salvador, BA, Brazil
| | | | - Raquel Tavares Boy da Silva
- Department of Pediatrics, Medical Sciences School, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | - Tássia Tonon
- Posgraduate Programme in Medicine - Medical Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Sperb-Ludwig
- Department of Genetics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.,BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Clinics Hospital of Porto Alegre, Porto Alegre, RS, Brazil
| | - Carolina Fischinger Moura de Souza
- Medical Genetics Service, Clinics Hospital of Porto Alegre, Department of Genetics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ida Vanessa Döederlein Schwartz
- Medical Genetics Service, Clinics Hospital of Porto Alegre, Department of Genetics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - José Simon Camelo
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av., 3900 - HC Criança - off D506, Ribeirão Prêto, SP, 14049-900, Brazil.
| |
Collapse
|
8
|
Pode-Shakked N, Korman SH, Pode-Shakked B, Landau Y, Kneller K, Abraham S, Shaag A, Ulanovsky I, Daas S, Saraf-Levy T, Reznik-Wolf H, Vivante A, Pras E, Almashanu S, Anikster Y. Clues and challenges in the diagnosis of intermittent maple syrup urine disease. Eur J Med Genet 2020; 63:103901. [PMID: 32151765 DOI: 10.1016/j.ejmg.2020.103901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/20/2020] [Accepted: 03/05/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Maple syrup urine disease is a rare autosomal-recessive aminoacidopathy, caused by deficient branched-chain 2-keto acid dehydrogenase (BCKD), with subsequent accumulation of branched-chain amino acids (BCAAs): leucine, isoleucine and valine. While most cases of MSUD are classic, some 20% of cases are non-classic variants, designated as intermediate- or intermittent-types. Patients with the latter form usually develop normally and are cognitively intact, with normal BCAA levels when asymptomatic. However, intercurrent febrile illness and catabolism may cause metabolic derailment with life-threatening neurological sequelae. Thus, early detection and dietary intervention are warranted in intermittent MSUD. PATIENTS AND METHODS We describe eight patients from four unrelated families, diagnosed with intermittent MSUD. Their presenting symptoms during metabolic crises varied from confusion and decreased consciousness, to ataxia, and acute psychosis. Molecular confirmation of MSUD was pursued via sequencing of the BCKDHA, BCKDHB and DBT genes. RESULTS All affected individuals were found to harbor bi-allelic pathogenic variants in either BCKDHB or DBT. Of the seven variants, four variants in BCKDHB (p.G101D, p. V103A, p. A221D, p. Y195C) and one variant in DBT (p.K427E) were not previously described. CONCLUSIONS While newborn screening programs allow for early detection of classic MSUD, cases of the intermittent form might go undetected, and present later in childhood following metabolic derailment, with an array of non-specific symptoms. Our experience with the families reported herein adds to the current knowledge regarding the phenotype and mutational spectrum of this unique inborn error of branched-chain amino acid metabolism, and underscore the high index of suspicion required for its diagnosis.
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Department of Pediatrics A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Stanley H Korman
- Wilf Children's Hospital, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ben Pode-Shakked
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel; Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yuval Landau
- Metabolic Disease Service, Day Care Department, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Katya Kneller
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Smadar Abraham
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Igor Ulanovsky
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Israel
| | - Suha Daas
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Israel
| | - Talya Saraf-Levy
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Israel
| | - Haike Reznik-Wolf
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
| | - Asaf Vivante
- Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel; Department of Pediatrics B, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Elon Pras
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shlomo Almashanu
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Israel
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
9
|
Genome-wide screening identifies novel genes implicated in cellular sensitivity to BRAF V600E expression. Oncogene 2019; 39:723-738. [PMID: 31548614 DOI: 10.1038/s41388-019-1022-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023]
Abstract
The V600E mutation of BRAF (BRAFV600E), which constitutively activates the ERK/MAPK signaling pathway, is frequently found in melanoma and other cancers. Like most other oncogenes, BRAFV600E causes oncogenic stress to normal cells, leading to growth arrest (senescence) or apoptosis. Through genome-wide screening, we identified genes implicated in sensitivity of human skin melanocytes and fibroblasts to BRAFV600E overexpression. Among the identified genes shared by the two cell types are proto-oncogenes ERK2, a component of the ERK/MAPK pathway, and VAV1, a guanine nucleotide exchange factor for Rho family GTPases that also activates the ERK/MAPK pathway. CDKN1A, which has been known to promote senescence of fibroblasts but not melanocytes, is implicated in sensitivity of the fibroblasts but not the melanocytes to BRAFV600E overexpression. Disruptions of GPR4, a pH-sensing G-protein coupled receptor, and DBT, a subunit of the branched chain α-keto acid dehydrogenase that is required for the second and rate-limiting step of branched amino acid catabolism and implicated in maple syrup urine disease, are the most highly selected in the melanocytes upon BRAFV600E overexpression. Disruption of DBT severely attenuates ERK/MAPK signaling, p53 activation, and apoptosis in melanocytes, at least in part due to accumulation of branched chain α-keto acids. The expression level of BRAF positively correlates with that of DBT in all cancer types and with that of GPR4 in most cancer types. Overexpression of DBT kills all four melanoma cell lines tested regardless of the presence of BRAFV600E mutation. Our findings shed new lights on regulations of oncogenic stress signaling and may be informative for development of novel cancer treatment strategies.
Collapse
|
10
|
Assessment of coding region variants in Kuwaiti population: implications for medical genetics and population genomics. Sci Rep 2018; 8:16583. [PMID: 30409984 PMCID: PMC6224454 DOI: 10.1038/s41598-018-34815-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Consanguineous populations of the Arabian Peninsula have been underrepresented in global efforts that catalogue human exome variability. We sequenced 291 whole exomes of unrelated, healthy native Arab individuals from Kuwait to a median coverage of 45X and characterised 170,508 single-nucleotide variants (SNVs), of which 21.7% were ‘personal’. Up to 12% of the SNVs were novel and 36% were population-specific. Half of the SNVs were rare and 54% were missense variants. The study complemented the Greater Middle East Variome by way of reporting many additional Arabian exome variants. The study corroborated Kuwaiti population genetic substructures previously derived using genome-wide genotype data and illustrated the genetic relatedness among Kuwaiti population subgroups, Middle Eastern, European and Ashkenazi Jewish populations. The study mapped 112 rare and frequent functional variants relating to pharmacogenomics and disorders (recessive and common) to the phenotypic characteristics of Arab population. Comparative allele frequency data and carrier distributions of known Arab mutations for 23 disorders seen among Arabs, of putative OMIM-listed causal mutations for 12 disorders observed among Arabs but not yet characterized for genetic basis in Arabs, and of 17 additional putative mutations for disorders characterized for genetic basis in Arab populations are presented for testing in future Arab studies.
Collapse
|
11
|
Deep intronic mutations and human disease. Hum Genet 2017; 136:1093-1111. [DOI: 10.1007/s00439-017-1809-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
|
12
|
|
13
|
Couce ML, Ramos F, Bueno MA, Díaz J, Meavilla S, Bóveda MD, Fernández-Marmiesse A, García-Cazorla A. Evolution of maple syrup urine disease in patients diagnosed by newborn screening versus late diagnosis. Eur J Paediatr Neurol 2015; 19:652-9. [PMID: 26232051 DOI: 10.1016/j.ejpn.2015.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/14/2015] [Accepted: 07/02/2015] [Indexed: 02/02/2023]
Abstract
Maple syrup urine disease (MSUD) is a rare metabolic disorder for which the newborn screening (NBS) is possible but it has not been yet implemented for most Spanish regions. In the present study, we assess the clinical features and outcome of 14 MSUD Spanish patients with similar treatment protocol diagnosed either by NBS or by clinical symptoms. Eight patients were detected by NBS, four classic and four moderate MSUD. The average age at detection was 4.6 days, the mean plasmatic concentration of leucine at diagnosis was 1807 μM; the average number of days with leucine >1000 μM was 0.7 (0-4) and the mean number of total hospitalizations was 1.6 (0-5). Mean follow-up time was 70 months. They had good evolution: all remain asymptomatic, but 2 patients have attention deficit and hyperactivity disorder. Six patients with late diagnosis of classic MSUD were followed during 41 months. All presented with acute encephalopathy during the first month of life, mean leucine levels of 2355 μM, mean number of days with leucine >1000 μM of 6.6 (1-13) and mean number of total hospitalizations of 5.3 (4-7). Only two patients have a psychomotor development index in the lower limit (80 and 83). For all patients a good genotype-phenotype correlation was found and four novel mutations were identified: p.A311H, p.T84S, p.T397L, pL398P. Our study support that NBS improves prognosis of MSUD patients. But early diagnosis and an aggressive treatment together with a close monitoring of leucine levels improve neurological evolution in MSUD patients, even for those not detected by NBS.
Collapse
Affiliation(s)
- M L Couce
- Metabolic Unit, Servei of Neonatology, Department of Pediatrics, Hospital Clínico Universitario de Santiago, IDIS, CIBERER, ISCIII, Santiago de Compostela, Spain.
| | - F Ramos
- Department of Neurology, Neurometabolic Unit, Hospital Sant Joan de Déu, and CIBERER, ISCIII, Barcelona, Spain
| | - M A Bueno
- Metabolic and Dismorphology Unit, Department of Pediatrics, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - J Díaz
- Gastroenterolgy, Nutrition and Metabolic Unit, Hospital Central de Asturias, Spain
| | - S Meavilla
- Department of Gastroenterology and Nutrition, Metabolic Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - M D Bóveda
- Metabolic Unit, Servei of Neonatology, Department of Pediatrics, Hospital Clínico Universitario de Santiago, IDIS, CIBERER, ISCIII, Santiago de Compostela, Spain
| | - A Fernández-Marmiesse
- Metabolic Unit, Servei of Neonatology, Department of Pediatrics, Hospital Clínico Universitario de Santiago, IDIS, CIBERER, ISCIII, Santiago de Compostela, Spain
| | - A García-Cazorla
- Department of Neurology, Neurometabolic Unit, Hospital Sant Joan de Déu, and CIBERER, ISCIII, Barcelona, Spain
| |
Collapse
|
14
|
Pérez B, Vilageliu L, Grinberg D, Desviat LR. Antisense mediated splicing modulation for inherited metabolic diseases: challenges for delivery. Nucleic Acid Ther 2014; 24:48-56. [PMID: 24506780 DOI: 10.1089/nat.2013.0453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the past few years, research in targeted mutation therapies has experienced significant advances, especially in the field of rare diseases. In particular, the efficacy of antisense therapy for suppression of normal, pathogenic, or cryptic splice sites has been demonstrated in cellular and animal models and has already reached the clinical trials phase for Duchenne muscular dystrophy. In different inherited metabolic diseases, splice switching oligonucleotides (SSOs) have been used with success in patients' cells to force pseudoexon skipping or to block cryptic splice sites, in both cases recovering normal transcript and protein and correcting the enzyme deficiency. However, future in vivo studies require individual approaches for delivery depending on the gene defect involved, given the different patterns of tissue and organ expression. Herein we review the state of the art of antisense therapy targeting RNA splicing in metabolic diseases, grouped according to their expression patterns-multisystemic, hepatic, or in central nervous system (CNS)-and summarize the recent progress achieved in the field of in vivo delivery of oligonucleotides to each organ or system. Successful body-wide distribution of SSOs and preferential distribution in the liver after systemic administration have been reported in murine models for different diseases, while for CNS limited data are available, although promising results with intratechal injections have been achieved.
Collapse
Affiliation(s)
- Belen Pérez
- 1 Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma de Madrid , Madrid, Spain. Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Feier FH, Miura IK, Fonseca EA, Porta G, Pugliese R, Porta A, Schwartz IVD, Margutti AVB, Camelo JS, Yamaguchi SN, Taveira AT, Candido H, Benavides M, Danesi V, Guimaraes T, Kondo M, Chapchap P, Neto JS. Successful domino liver transplantation in maple syrup urine disease using a related living donor. ACTA ACUST UNITED AC 2014; 47:522-6. [PMID: 24770567 PMCID: PMC4086180 DOI: 10.1590/1414-431x20143830] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/25/2014] [Indexed: 11/22/2022]
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive disease associated with
high levels of branched-chain amino acids. Children with MSUD can present severe
neurological damage, but liver transplantation (LT) allows the patient to resume a
normal diet and avoid further neurological damage. The use of living related donors
has been controversial because parents are obligatory heterozygotes. We report a case
of a 2-year-old child with MSUD who underwent a living donor LT. The donor was the
patient's mother, and his liver was then used as a domino graft. The postoperative
course was uneventful in all three subjects. DNA analysis performed after the
transplantation (sequencing of the coding regions of BCKDHA,
BCKDHB, and DBT genes) showed that the MSUD
patient was heterozygous for a pathogenic mutation in the BCKDHB
gene. This mutation was not found in his mother, who is an obligatory carrier for
MSUD according to the family history and, as expected, presented both normal clinical
phenotype and levels of branched-chain amino acids. In conclusion, our data suggest
that the use of a related donor in LT for MSUD was effective, and the liver of the
MSUD patient was successfully used in domino transplantation. Routine donor
genotyping may not be feasible, because the test is not widely available, and, most
importantly, the disease is associated with both the presence of allelic and locus
heterogeneity. Further studies with this population of patients are required to
expand the use of related donors in MSUD.
Collapse
Affiliation(s)
- F H Feier
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - I K Miura
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - E A Fonseca
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - G Porta
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - R Pugliese
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - A Porta
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - I V D Schwartz
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A V B Margutti
- Departamento de Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J S Camelo
- Departamento de Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - S N Yamaguchi
- Departamento de Nutrição, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - A T Taveira
- Departamento de Hepatologia, Universidade Estadual do Amazonas, Manaus, AM, Brasil
| | - H Candido
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - M Benavides
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - V Danesi
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - T Guimaraes
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - M Kondo
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - P Chapchap
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - J Seda Neto
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| |
Collapse
|
16
|
Solomon BD, Pineda-Alvarez DE, Bear KA, Mullikin JC, Evans JP. Applying Genomic Analysis to Newborn Screening. Mol Syndromol 2012; 3:59-67. [PMID: 23112750 DOI: 10.1159/000341253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2012] [Indexed: 01/30/2023] Open
Abstract
Large-scale genomic analysis such as whole-exome and whole-genome sequencing is becoming increasingly prevalent in the research arena. Clinically, many potential uses of this technology have been proposed. One such application is the extension or augmentation of newborn screening. In order to explore this application, we examined data from 3 children with normal newborn screens who underwent whole-exome sequencing as part of research participation. We analyzed sequence information for 151 selected genes associated with conditions ascertained by newborn screening. We compared findings with publicly available databases and results from over 500 individuals who underwent whole-exome sequencing at the same facility. Novel variants were confirmed through bidirectional dideoxynucleotide sequencing. High-density microarrays (Illumina Omni1-Quad) were also performed to detect potential copy number variations affecting these genes. We detected an average of 87 genetic variants per individual. After excluding artifacts, 96% of the variants were found to be reported in public databases and have no evidence of pathogenicity. No variants were identified that would predict disease in the tested individuals, which is in accordance with their normal newborn screens. However, we identified 6 previously reported variants and 2 novel variants that, according to published literature, could result in affected offspring if the reproductive partner were also a mutation carrier; other specific molecular findings highlight additional means by which genomic testing could augment newborn screening.
Collapse
Affiliation(s)
- B D Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md., USA
| | | | | | | | | | | |
Collapse
|
17
|
Pérez B, Rodríguez-Pascau L, Vilageliu L, Grinberg D, Ugarte M, Desviat LR. Present and future of antisense therapy for splicing modulation in inherited metabolic disease. J Inherit Metab Dis 2010; 33:397-403. [PMID: 20577904 DOI: 10.1007/s10545-010-9135-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 12/28/2022]
Abstract
The number of mutations identified deep in introns which activate or create novel splice sites resulting in pathogenic pseudoexon inclusion in mRNA continues to grow for inherited metabolic disease (IMD) and other human genetic diseases. A common characteristic is that the native splice sites remain intact thus retaining the potential for normal splicing. Antisense oligonucleotides (AO) have been shown to modulate the splicing pattern by steric hindrance of the recognition and binding of the splicing apparatus to the selected sequences. In the case of pseudoexons, AO force the use of the natural splice sites, recovering normally spliced transcripts encoding functional protein. This review summarizes the present knowledge of antisense splicing modulation as a molecular therapy approach for pseudoexon-activating mutations, with a focus in IMD. Although the feasibility of treatment for patients with IMD has yet to be proven, it appears to be clinically promising, as positive results have been reported in cellular and animal models of disease, and antisense therapy for splicing modulation is currently in the clinical trials phase for Duchenne muscular dystrophy patients. Here, we review the most recent advances in AO stability, targeting and delivery, and other issues to be considered for an effective treatment in the clinical setting. Although the number of patients who can be potentially treated is low for each IMD, it represents an excellent therapeutical option as a type of personalized molecular medicine which is especially relevant for diseases for which there is, to date, no efficient treatment.
Collapse
Affiliation(s)
- Belen Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Mitsubuchi H, Owada M, Endo F. Markers associated with inborn errors of metabolism of branched-chain amino acids and their relevance to upper levels of intake in healthy people: an implication from clinical and molecular investigations on maple syrup urine disease. J Nutr 2005; 135:1565S-70S. [PMID: 15930470 DOI: 10.1093/jn/135.6.1565s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maple syrup urine disease (MSUD) is caused by a deficiency in the branched-chain alpha-ketoacid dehydrogenase complex. Accumulations of branched-chain amino acids (BCAAs) and branched-chain alpha-ketoacids (BCKAs) in patients with MSUD induce ketoacidosis, neurological disorders, and developmental disturbance. BCAAs and BCKAs influence on the nervous system can be estimated by analyzing these patients. According to clinical investigations on MSUD patients, leucine levels over 400 micromol/L apparently can cause any clinical problem derived from impaired function of the central nervous system. Damage to neuronal cells found in MSUD patients are presumably because of higher concentrations of both blood BCAAs or BCKAs, especially alpha-ketoisocapronic acids. These clinical data from MSUD patients provide a valuable basis on understanding leucine toxicity in the normal subject.
Collapse
Affiliation(s)
- Hiroshi Mitsubuchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | | |
Collapse
|
19
|
Chi CS, Tsai CR, Chen LH, Lee HF, Mak BSC, Yang SH, Wang TY, Shu SG, Chen CH. Maple syrup urine disease in the Austronesian aboriginal tribe Paiwan of Taiwan: a novel DBT (E2) gene 4.7 kb founder deletion caused by a nonhomologous recombination between LINE-1 and Alu and the carrier-frequency determination. Eur J Hum Genet 2003; 11:931-6. [PMID: 14508502 DOI: 10.1038/sj.ejhg.5201069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive inborn error disorder derived from the accumulation of the branched-chain amino acids (BCAAs) leucine, isoleucine and valine. Either the E1alpha, E1beta or DBT (E2) genes are responsible for this neurometabolic disease. Here, we report the identification and characterization of a novel E2 gene 4.7 kb deletion as a rare nonhomologous recombination of the long interspersed nuclear elements 1 (LINE-1) in intron 10 and the Alu in the 3' UTR of the E2 gene from three classic MSUD patients of the Austronesian aboriginal tribe Paiwan in Taiwan. The E2 gene 4.7 kb deletion accounted for five out of six alleles in the three unrelated Paiwanese MSUD patients, indicating a founder effect. Carrier-frequency study revealed one deleted heterozygote out of 101 normal Paiwanese. As the nine Taiwanese Austronesian aboriginal tribes share a common origin, this E2 4.7 kb deletion may be preserved in some of the other Austronesian aboriginal tribes of Taiwan. This is the first comprehensive genetics study of MSUD in the Austronesian tribal groups as well as in Taiwan.
Collapse
Affiliation(s)
- Ching-Shiang Chi
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan, ROC.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Friedman KJ, Kole J, Cohn JA, Knowles MR, Silverman LM, Kole R. Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J Biol Chem 1999; 274:36193-9. [PMID: 10593905 DOI: 10.1074/jbc.274.51.36193] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CFTR splicing mutation 3849 + 10 kb C --> T creates a novel donor site 10 kilobases (kb) into intron 19 of the gene and is one of the more common splicing mutations that causes cystic fibrosis (CF). It has an elevated prevalence among patients with atypically mild disease and normal sweat electrolytes and is especially prominent in Ashkenazi Jews. This class of splicing mutations, reported in several genes, involves novel splice sites activated deep within introns while leaving wild-type splice elements intact. CFTR cDNA constructs that modeled the 3849 + 10 kb C --> T mutation were expressed in 3T3 mouse fibroblasts and in CFT1 human tracheal and C127 mouse mammary epithelial cells. In all three cell types, aberrant splicing of CFTR pre-mRNA was comparable to that reported in vivo in CF patients. Treatment of the cells with 2'-O-methyl phosphorothioate oligoribonucleotides antisense toward the aberrant donor and acceptor splice sites or to the retained exon-like sequence, disfavored aberrant splicing and enhanced normal processing of CFTR pre-mRNA. This antisense-mediated correction of splicing was dose- and sequence-dependent and was accompanied by increased production of CFTR protein that was appropriately glycosylated. Antisense-mediated correction of splicing in a mutation-specific context represents a potential gene therapy modality with applicability to many inherited disorders.
Collapse
Affiliation(s)
- K J Friedman
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
21
|
Mardy S, Miura Y, Endo F, Matsuda I, Sztriha L, Frossard P, Moosa A, Ismail EA, Macaya A, Andria G, Toscano E, Gibson W, Graham GE, Indo Y. Congenital insensitivity to pain with anhidrosis: novel mutations in the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor. Am J Hum Genet 1999; 64:1570-9. [PMID: 10330344 PMCID: PMC1377900 DOI: 10.1086/302422] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Congenital insensitivity to pain with anhidrosis (CIPA) is characterized by recurrent episodes of unexplained fever, anhidrosis (inability to sweat), absence of reaction to noxious stimuli, self-mutilating behavior, and mental retardation. Human TRKA encodes a high-affinity tyrosine kinase receptor for nerve growth factor (NGF), a member of the neurotrophin family that induces neurite outgrowth and promotes survival of embryonic sensory and sympathetic neurons. We have recently demonstrated that TRKA is responsible for CIPA by identifying three mutations in a region encoding the intracellular tyrosine kinase domain of TRKA in one Ecuadorian and three Japanese families. We have developed a comprehensive strategy to screen for TRKA mutations, on the basis of the gene's structure and organization. Here we report 11 novel mutations, in seven affected families. These are six missense mutations, two frameshift mutations, one nonsense mutation, and two splice-site mutations. Mendelian inheritance of the mutations is confirmed in six families for which parent samples are available. Two mutations are linked, on the same chromosome, to Arg85Ser and to His598Tyr;Gly607Val, hence, they probably represent double and triple mutations. The mutations are distributed in an extracellular domain, involved in NGF binding, as well as the intracellular signal-transduction domain. These data suggest that TRKA defects cause CIPA in various ethnic groups.
Collapse
Affiliation(s)
- S Mardy
- Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|