1
|
Bolle ECL, Bartnikowski N, Haridas P, Parker TJ, Fraser JF, Gregory SD, Dargaville TR. Improving skin integration around long-term percutaneous devices using fibrous scaffolds in a reconstructed human skin equivalent model. J Biomed Mater Res B Appl Biomater 2019; 108:738-749. [PMID: 31169980 DOI: 10.1002/jbm.b.34428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023]
Abstract
The interface between synthetic percutaneous devices and skin is a common area for bacterial infection, which may ultimately result in failure of the device. Better integration of percutaneous devices with skin may help reduce infection rates due to the creation of a dermal seal. However, the mismatch in material and chemical properties of devices and skin presents a challenge for closing the dermal gap at the skin-device interface. Here, we have used a tissue engineering approach to tissue integration by creating a highly fibrous poly(ε-caprolactone) scaffold using melt electrowriting and seeding this with dermal fibroblasts, followed by maturation and insertion into a full-thickness defect made in an ex vivo skin model. The integration of seeded scaffolds was compared with controls including a non-seeded scaffold and a polymer tube with a smooth surface. Dermal fibroblast inclusion in the scaffold and epidermal upgrowth versus downgrowth/marsupialization around the device were used as measures of integration. Based on these measures, almost all pre-seeded scaffolds performed better than both the non-seeded scaffolds and smooth tubes. The hypothesis is that the fibroblasts act as a barrier to epithelial downward migration, and provide healthy tissue for nascent epidermal development.
Collapse
Affiliation(s)
- Eleonore C L Bolle
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia.,Innovative Cardiovascular Engineering and Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Nicole Bartnikowski
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia.,Innovative Cardiovascular Engineering and Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Parvathi Haridas
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tony J Parker
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - John F Fraser
- Innovative Cardiovascular Engineering and Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Shaun D Gregory
- Innovative Cardiovascular Engineering and Technology Laboratory (ICETLAB), Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Tim R Dargaville
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Nishida M. Artificial hearts-recent progress: republication of the article published in the Japanese Journal of Artificial Organs. J Artif Organs 2017; 20:187-193. [PMID: 28620709 DOI: 10.1007/s10047-017-0969-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022]
Abstract
This review was created based on a translation of the Japanese review written in the Japanese Journal of Artificial Organs in 2015 (Vol.44, No. 3, pp.130-135), with some modifications regarding several references published in 2015 or later.
Collapse
Affiliation(s)
- Masahiro Nishida
- Artificial Organ Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki, 305-8564, Japan.
| |
Collapse
|
3
|
Fleissner F, Avsar M, Malehsa D, Strueber M, Haverich A, Schmitto JD. Reduction of Driveline Infections Through Doubled Driveline Tunneling of Left Ventricular Assist Devices. Artif Organs 2013; 37:102-7. [DOI: 10.1111/aor.12036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Murat Avsar
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover; Germany
| | - Doris Malehsa
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover; Germany
| | - Martin Strueber
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover; Germany
| | - Axel Haverich
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover; Germany
| | - Jan D. Schmitto
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover; Germany
| |
Collapse
|