1
|
Mizuno T, Iwai R, Moriwaki T, Nakayama Y. Application of Biosheets as Right Ventricular Outflow Tract Repair Materials in a Rat Model. Front Vet Sci 2022; 9:837319. [PMID: 35464349 PMCID: PMC9024079 DOI: 10.3389/fvets.2022.837319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Purposes We report the experimental use of completely autologous biomaterials (Biosheets) made by “in-body tissue architecture” that could resolve problems in artificial materials and autologous pericardium. Here, Biosheets were implanted into full-thickness right ventricular outflow tract defects in a rat model. Their feasibility as a reparative material for cardiac defects was evaluated. Methods As the evaluation of mechanical properties of the biosheets, the elastic moduli of the biosheets and RVOT-free walls of rats were examined using a tensile tester. Biosheets and expanded polytetrafluoroethylene sheet were used to repair transmural defects surgically created in the right ventricular outflow tracts of adult rat hearts (n = 9, each patch group). At 4 and 12 weeks after the operation, the hearts were resected and histologically examined. Results The strength and elastic moduli of the biosheets were 421.3 ± 140.7 g and 2919 ± 728.9 kPa, respectively, which were significantly higher than those of the native RVOT-free walls (93.5 ± 26.2 g and 778.6 ± 137.7 kPa, respectively; P < 0.005 and P < 0.001, respectively). All patches were successfully implanted into the right ventricular outflow tract-free wall of rats. Dense fibrous adhesions to the sternum on the epicardial surface were also observed in 7 of 9 rats with ePTFE grafts, whereas 2 of 9 rats with biosheets. Histologically, the vascular-constructing cells were infiltrated into Biosheets. The luminal surfaces were completely endothelialized in all groups at each time point. There was also no accumulation of inflammatory cells. Conclusions Biosheets can be formed easily and have sufficient strength and good biocompatibility as a patch for right ventricular outflow tract repair in rats. Therefore, Biosheet may be a suitable material for reconstructive surgery of the right ventricular outflow tract.
Collapse
Affiliation(s)
- Takeshi Mizuno
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Takeshi Mizuno
| | - Ryosuke Iwai
- Research Institute of Technology, Okayama University of Science, Okayama, Japan
| | - Takeshi Moriwaki
- Department of Mechanical Science and Engineering, Faculty of Science and Technology, Hirosaki University, Aomori, Japan
| | | |
Collapse
|
2
|
Inoue Y, Tashiro A, Kawase Y, Isoyama T, Saito I, Ono T, Hara S, Ishii K, Yurimoto T, Shiraishi Y, Yamada A, Yambe T, Abe Y. Optimum Sterilization Methods of Biocompatible Hybrid Material for Artificial Organs. ADVANCED BIOMEDICAL ENGINEERING 2020. [DOI: 10.14326/abe.9.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yusuke Inoue
- Institute of Development, Aging and Cancer, Tohoku University
- Graduate School of Medicine, University of Tokyo
- Advanced Medical Engineering Research Center, Asahikawa Medical University
| | | | | | | | - Itsuro Saito
- Graduate School of Medicine, University of Tokyo
| | - Toshiya Ono
- Graduate School of Medicine, University of Tokyo
| | | | - Kohei Ishii
- National Institute of Technology, Kagawa College
| | | | | | - Akihiro Yamada
- Institute of Development, Aging and Cancer, Tohoku University
| | - Tomoyuki Yambe
- Institute of Development, Aging and Cancer, Tohoku University
| | - Yusuke Abe
- Graduate School of Medicine, University of Tokyo
- Department of Medical and General Sciences, Nihon Institute of Medical Science
| |
Collapse
|
3
|
Bakhshandeh B, Zarrintaj P, Oftadeh MO, Keramati F, Fouladiha H, Sohrabi-Jahromi S, Ziraksaz Z. Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 2018; 33:144-172. [PMID: 29385962 DOI: 10.1080/02648725.2018.1430464] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current tissue regenerative strategies rely mainly on tissue repair by transplantation of the synthetic/natural implants. However, limitations of the existing strategies have increased the demand for tissue engineering approaches. Appropriate cell source, effective cell modification, and proper supportive matrices are three bases of tissue engineering. Selection of appropriate methods for cell stimulation, scaffold synthesis, and tissue transplantation play a definitive role in successful tissue engineering. Although the variety of the players are available, but proper combination and functional synergism determine the practical efficacy. Hence, in this review, a comprehensive view of tissue engineering and its different aspects are investigated.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Payam Zarrintaj
- b School of Chemical Engineering, College of Engineering , University of Tehran , Tehran , Iran
| | - Mohammad Omid Oftadeh
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran.,c Stem Cell Technology Research Center , Tehran , Iran
| | - Farid Keramati
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Hamideh Fouladiha
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Salma Sohrabi-Jahromi
- d Gottingen Center for Molecular Biosciences , Georg August University , Göttingen , Germany
| | | |
Collapse
|
4
|
Syedain Z, Reimer J, Lahti M, Berry J, Johnson S, Tranquillo RT. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun 2016; 7:12951. [PMID: 27676438 PMCID: PMC5052664 DOI: 10.1038/ncomms12951] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/18/2016] [Indexed: 01/17/2023] Open
Abstract
Treatment of congenital heart defects in children requiring right ventricular outflow tract reconstruction typically involves multiple open-heart surgeries because all existing graft materials have no growth potential. Here we present an ‘off-the-shelf' vascular graft grown from donor fibroblasts in a fibrin gel to address this critical unmet need. In a proof-of-concept study, the decellularized grafts are implanted as a pulmonary artery replacement in three young lambs and evaluated to adulthood. Longitudinal ultrasounds document dimensional growth of the grafts. The lambs show normal growth, increasing body weight by 366% and graft diameter and volume by 56% and 216%, respectively. Explanted grafts display physiological strength and stiffness, complete lumen endothelialization and extensive population by mature smooth muscle cells. The grafts also show substantial elastin deposition and a 465% increase in collagen content, without signs of calcification, aneurysm or stenosis. Collectively, our data support somatic growth of this completely biological graft. Current vessel grafts must be surgically replaced when the recipient outgrows them. Here, Syedain et al. bioengineer a tube of acellular matrix produced from sheep fibroblasts that is capable of cellularizaton and somatic growth when transplanted into growing lambs, eliminating the need for multiple graft surgeries.
Collapse
Affiliation(s)
- Zeeshan Syedain
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jay Reimer
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Matthew Lahti
- Experimental Surgical Services, Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - James Berry
- Experimental Surgical Services, Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Sandra Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Robert T Tranquillo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Chemical Engineering &Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
5
|
Sawa Y, Matsuda K, Tatsumi E, Matsumiya G, Tsukiya T, Abe T, Fukunaga K, Kishida A, Kokubo K, Masuzawa T, Myoui A, Nishimura M, Nishimura T, Nishinaka T, Okamoto E, Tokunaga S, Tomo T, Yagi Y, Yamaoka T. Journal of Artificial Organs 2015: the year in review : Journal of Artificial Organs Editorial Committee. J Artif Organs 2016; 19:1-7. [PMID: 26896942 DOI: 10.1007/s10047-016-0886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Y Sawa
- Division of Cardiovascular Surgery, Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - K Matsuda
- Emergency and Critical Care Medicine, University of Yamanashi Hospital, Yamanashi, Japan
| | - E Tatsumi
- Department of Artificial Organs, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - G Matsumiya
- Department of Cardiovascular Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - T Tsukiya
- Department of Artificial Organs, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - T Abe
- Department of Urology, Iwate Medical University School of Medicine, Iwate, Japan
| | - K Fukunaga
- Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - A Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - K Kokubo
- Department of Medical Engineering and Technology, Kitasato University School of Allied Health Science, Kanagawa, Japan
| | - T Masuzawa
- Department of Mechanical Engineering, Ibaraki University, Ibaraki, Japan
| | - A Myoui
- Medical Center for Translational Research, Osaka University Hospital, Osaka, Japan
| | - M Nishimura
- Division of Organ Regeneration Surgery, Tottori University Faculty of Medicine, Tottori, Japan
| | - T Nishimura
- Department of Therapeutic Strategy for Heart Failure, The University of Tokyo, Tokyo, Japan
| | - T Nishinaka
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - E Okamoto
- Department of Human Science and Informatics, School of Bioscience and Engineering, Tokai University, Sapporo, Japan
| | - S Tokunaga
- The Department of Cardiovascular Surgery, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - T Tomo
- Second Department of Internal Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Y Yagi
- Department of Clinical Engineering, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - T Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
6
|
Nakayama Y, Furukoshi M. Feasibility of In-body Tissue Architecture (IBTA) in Pediatric Cardiovascular Surgery: Development of Regenerative Autologous Tissues with Growth Potential. ACTA ACUST UNITED AC 2016. [DOI: 10.9794/jspccs.32.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yasuhide Nakayama
- Division of Medical Engineering and Materials,
National Cerebral and Cardiovascular Center Research Institute
| | - Maya Furukoshi
- Division of Medical Engineering and Materials,
National Cerebral and Cardiovascular Center Research Institute
| |
Collapse
|
7
|
Furukoshi M, Moriwaki T, Nakayama Y. Development of an in vivo tissue-engineered vascular graft with designed wall thickness (biotube type C) based on a novel caged mold. J Artif Organs 2015; 19:54-61. [PMID: 26265146 DOI: 10.1007/s10047-015-0859-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/29/2015] [Indexed: 11/27/2022]
Abstract
Small-diameter biotube vascular grafts developed by in-body tissue architecture had high patency at implantation into rabbit carotid arteries or rat abdominal aortas. However, the thin walls (34 ± 14 μm) of the original biotubes made their implantation difficult into areas with low blood flow volumes or low blood pressure due to insufficient mechanical strength to maintain luminal shape. In this study, caged molds with several windows were designed to prepare more robust biotubes. The molds were assembled with silicone tubes (external diameter 2 mm) and cylindrical covers (outer diameter 7 mm) with 12 linear windows (1 × 9 mm). After the molds were embedded into beagle dorsal subcutaneous pouches for 4 weeks, type C (cage) biotubes were obtained by completely extracting the surrounding connective tissues from the molds and removing the molds. The biotube walls (778 ± 31 μm) were formed at the aperture (width 1 mm) between the silicone rods and the covers by connective cell migration through the windows of the covers. Excellent mechanical properties (external pressure resistance, approximately 4 times higher than beagle native femoral arteries; burst strength, approximately 2 times higher than original biotubes) were obtained. In the acute phase of implantation of the biotubes into beagle femoral arteries, perfect patency was obtained with little stenosis and no aneurysmal dilation. The type C biotubes may be useful for implantation into peripheral arteries or veins in addition to aortas.
Collapse
Affiliation(s)
- Maya Furukoshi
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Takeshi Moriwaki
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Yasuhide Nakayama
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
8
|
Funayama M, Furukoshi M, Moriwaki T, Nakayama Y. Development of an in vivo tissue-engineered valved conduit (type S biovalve) using a slitted mold. J Artif Organs 2015; 18:382-6. [PMID: 26233653 DOI: 10.1007/s10047-015-0856-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/15/2015] [Indexed: 11/24/2022]
Abstract
In autologous valved conduits (biovalves) using in-body tissue architecture, the limited area available for leaflet formation is a concern. In this study, we designed a novel biovalve mold with slits to enhance in vivo cell migration, regardless of size. As a control, the original mold without slits was used. When both types of molds were embedded into subcutaneous pouches in beagle dogs for 8 weeks, the outer surfaces of all molds were completely covered with connective tissue to form conduit tissue. In the molds without slits, the leaflet size was limited to half of the design. In contrast, in the mold with slits, the complete leaflet area was formed. Upon trimming excess peripheral tissues, removing the mold, and cutting the connective tissue formed at the slits, completely autologous connective tissue biovalves with the designed leaflet area were obtained as type S (diameter, 6-28 mm) biovalves. The slit structure customized to the mold was effective for allowing cells to enter, thereby facilitating cell migration and contributing to the successful preparation of reliable biovalves of various physiological sizes suitable for all clinical uses.
Collapse
Affiliation(s)
- Marina Funayama
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan.
| | - Maya Furukoshi
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Takeshi Moriwaki
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Yasuhide Nakayama
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|