1
|
Lee YJ, Ryu YH, Lee SJ, Moon SH, Kim KJ, Jin BJ, Lee KD, Park JK, Lee JW, Lee SJ, Jeong HJ, Rhie JW. Bone Regeneration with 3D-Printed Hybrid Bone Scaffolds in a Canine Radial Bone Defect Model. Tissue Eng Regen Med 2022; 19:1337-1347. [PMID: 36161585 PMCID: PMC9679072 DOI: 10.1007/s13770-022-00476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The repair of large bone defects remains a significant challenge in clinical practice and requires bone grafts or substitute materials. In this study, we developed a unique hybrid bone scaffold comprising a three dimensional (3D)-printed metal plate for weight bearing and a biodegradable polymer tube serving as bone conduit. We assessed the long-term effect of the hybrid bone scaffold in repairing radial bone defects in a beagle model. METHODS Bone defects were created surgically on the radial bone of three beagle dogs and individually-tailored scaffolds were used for reconstruction with or without injection of autologous bone and decellularized extracellular matrix (dECM). The repaired tissue was evaluated by X-ray, micro-computed tomography, and histological observation 6 months after surgery. The functional integrity of hybrid bone scaffold-mediated reconstructions was assessed by gait analysis. RESULTS In vivo analysis showed that the hybrid bone scaffolds maintained the physical space and bone conductivity around the defect. New bone was formed adjacent to the scaffolds. Addition of autologous bone and dECM in the polymer tube improved healing by enhancing bone induction and osteoconduction. Furthermore, the beagles' gait appeared normal by 4 months. CONCLUSION The future of bone healing and regeneration is closely related to advances in tissue engineering. Bone production using autologous bone and dECM loaded on 3D-printed hybrid bone scaffolds can successfully induce osteogenesis and provide mechanical force for functional bone regeneration, even in large bone defects.
Collapse
Affiliation(s)
- Yoon Jae Lee
- Department of Plastic and Reconstructive Surgery, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul, 07345, Republic of Korea
| | - Yeon Hee Ryu
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Su Jin Lee
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Suk-Ho Moon
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Ki Joo Kim
- Cell Therapy Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-7001, Republic of Korea
| | - Byeong Ju Jin
- AI and Mechanical System Center, Institute for Advanced Engineering, Yongin, Republic of Korea
| | - Kyoung-Don Lee
- AI and Mechanical System Center, Institute for Advanced Engineering, Yongin, Republic of Korea
| | - Jung Kyu Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon, 21999, Republic of Korea
| | - Jin Woo Lee
- Department of Health Science and Technology, GAIHST and Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon, 21999, Republic of Korea
| | - Seung-Jae Lee
- Department of Mechanical and Design Engineering, College of Engineering, Wonkwang University, Iksan, Republic of Korea
| | - Hun-Jin Jeong
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, USA
| | - Jong Won Rhie
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea.
| |
Collapse
|
2
|
James J, Oblak ML, Zur Linden AR, James FMK, Phillips J, Parkes M. Schedule feasibility and workflow for additive manufacturing of titanium plates for ranioplasty in canine skull tumors. BMC Vet Res 2020; 16:180. [PMID: 32505206 PMCID: PMC7275598 DOI: 10.1186/s12917-020-02343-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Additive manufacturing has allowed for the creation of a patient-specific custom solution that can resolve many of the limitations previously reported for canine cranioplasty. The purpose of this pilot study was to determine the schedule feasibility and workflow in manufacturing patient-specific titanium implants for canines undergoing cranioplasty immediately following craniectomy. Results Computed tomography scans from patients with tumors of the skull were considered and 3 cases were selected. Images were imported into a DICOM image processing software and tumor margins were determined based on agreement between a board-certified veterinary radiologist and veterinary surgical oncologist. Virtual surgical planning was performed and a bone safety margin was selected. A defect was created to simulate the planned intraoperative defect. Stereolithography format files of the skulls were then imported into a plate design software. In collaboration with a medical solution centre, a custom titanium plate was designed with the input of an applications engineer and veterinary surgery oncologist. Plates were printed in titanium and post-processed at the solution centre. Total planning time was approximately 2 h with a manufacturing time of 2 weeks. Conclusions Based on the findings of this study, with access to an advanced 3D metal printing medical solution centre that can provide advanced software and printing, patient-specific additive manufactured titanium implants can be planned, created, processed, shipped and sterilized for patient use within a 3-week turnaround.
Collapse
Affiliation(s)
- J James
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - M L Oblak
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| | - A R Zur Linden
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - F M K James
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - J Phillips
- College of Arts, University of Guelph, Guelph, Ontario, Canada.,Centre for Advanced Manufacturing and Design Technologies (CAMDT), Sheridan College, Brampton, Ontario, Canada
| | - M Parkes
- Additive Design in Surgical Solutions Centre (ADEISS), London, Ontario, Canada
| |
Collapse
|
3
|
Abstract
Treatment of bone defects remains a challenging clinical problem. Despite our better understanding of bone repair mechanisms and advances made in microsurgical techniques and regenerative medicine, the reintervention rates and morbidity remain high. Surgical techniques such as allograft implantation, free vascularized fibular graft, distraction osteogenesis, loaded titanium cages, and the induced membrane technique continue to evolve, but the outcome can be affected by a number of parameters including the age of the patient, comorbidities, systemic disorders, the location of the defect, and the surgeon's preference and experience. In the herein article, a brief summary of the most currently used techniques for the management of bone defects is presented.
Collapse
|