1
|
Kushibiki T, Mayumi Y, Nakayama E, Azuma R, Ojima K, Horiguchi A, Ishihara M. Photocrosslinked gelatin hydrogel improves wound healing and skin flap survival by the sustained release of basic fibroblast growth factor. Sci Rep 2021; 11:23094. [PMID: 34845307 PMCID: PMC8630120 DOI: 10.1038/s41598-021-02589-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Biomaterials traditionally used for wound healing can act as a temporary barrier to halt bleeding, prevent infection, and enhance regeneration. Hydrogels are among the best candidates for wound healing owing to their moisture retention and drug-releasing properties. Photo-polymerization using visible light irradiation is a promising method for hydrogel preparation since it can easily control spatiotemporal reaction kinetics and rapidly induce a single-step reaction under mild conditions. In this study, photocrosslinked gelatin hydrogels were imparted with properties namely fast wound adherence, strong wet tissue surface adhesion, greater biocompatibility, long-term bFGF release, and importantly, ease of use through the modification and combination of natural bio-macromolecules. The production of a gelatin hydrogel made of natural gelatin (which is superior to chemically modified gelatin), crosslinked by visible light, which is more desirable than UV light irradiation, will enable its prolonged application to uneven wound surfaces. This is due to its flexible shape, along with the administration of cell growth factors, such as bFGF, for tissue regeneration. Further, the sustained release of bFGF enhances wound healing and skin flap survival. The photocrosslinking gelatin hydrogel designed in this study is a potential candidate to enhance wound healing and better skin flap survival.
Collapse
Affiliation(s)
- Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan.
| | - Yoshine Mayumi
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Eiko Nakayama
- Department of Plastic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Ryuichi Azuma
- Department of Plastic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Kenichiro Ojima
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Akio Horiguchi
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| |
Collapse
|
2
|
Wu L, Gao S, Zhao T, Tian K, Zheng T, Zhang X, Xiao L, Ding Z, Lu Q, Kaplan DL. Pressure-driven spreadable deferoxamine-laden hydrogels for vascularized skin flaps. Biomater Sci 2021; 9:3162-3170. [PMID: 33881061 PMCID: PMC8096535 DOI: 10.1039/d1bm00053e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of hydrogels that support vascularization to improve the survival of skin flaps, yet establishing homogeneous angiogenic niches without compromising the ease of use in surgical settings remains a challenge. Here, pressure-driven spreadable hydrogels were developed utilizing beta-sheet rich silk nanofiber materials. These silk nanofiber-based hydrogels exhibited excellent spreading under mild pressure to form a thin coating to cover all the regions of the skin flaps. Deferoxamine (DFO) was loaded onto the silk nanofibers to support vascularization and these DFO-laden hydrogels were implanted under skin flaps in rats to fill the interface between the wound bed and the flap using the applied pressure. The thickness of the spread hydrogels was below 200 μm, minimizing the physical barrier effects from the hydrogels. The distribution of the hydrogels provided homogeneous angiogenic stimulation, accelerating rapid blood vessel network formation and significantly improving the survival of the skin flaps. The hydrogels also modulated the immune reactions, further facilitating the regeneration of the skin flaps. Considering the homogeneous distribution at the wound sites, improved vascularization, reduced barrier effects and low inflammation, these hydrogels appear to be promising candidates for use in tissue repair where a high blood supply is in demand. The pressure-driven spreading properties should simplify the use of the hydrogels in surgical settings to facilitate clinical translation.
Collapse
Affiliation(s)
- Lijun Wu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China. and Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Suyue Gao
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China and Department of Dermatology and Cosmetic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Tianlan Zhao
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Kai Tian
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Tingyu Zheng
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|