1
|
Granat L, Knorr DY, Ranson DC, Chakrabarty RP, Chandel NS, Bateman JM. A Drosophila model of mitochondrial disease phenotypic heterogeneity. Biol Open 2024; 13:bio060278. [PMID: 38304969 PMCID: PMC10924217 DOI: 10.1242/bio.060278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Mutations in genes that affect mitochondrial function cause primary mitochondrial diseases. Mitochondrial diseases are highly heterogeneous and even patients with the same mitochondrial disease can exhibit broad phenotypic heterogeneity, which is poorly understood. Mutations in subunits of mitochondrial respiratory complex I cause complex I deficiency, which can result in severe neurological symptoms and death in infancy. However, some complex I deficiency patients present with much milder symptoms. The most common nuclear gene mutated in complex I deficiency is the highly conserved core subunit NDUFS1. To model the phenotypic heterogeneity in complex I deficiency, we used RNAi lines targeting the Drosophila NDUFS1 homolog ND-75 with different efficiencies. Strong knockdown of ND-75 in Drosophila neurons resulted in severe behavioural phenotypes, reduced lifespan, altered mitochondrial morphology, reduced endoplasmic reticulum (ER)-mitochondria contacts and activation of the unfolded protein response (UPR). By contrast, weak ND-75 knockdown caused much milder behavioural phenotypes and changes in mitochondrial morphology. Moreover, weak ND-75 did not alter ER-mitochondria contacts or activate the UPR. Weak and strong ND-75 knockdown resulted in overlapping but distinct transcriptional responses in the brain, with weak knockdown specifically affecting proteosome activity and immune response genes. Metabolism was also differentially affected by weak and strong ND-75 knockdown including gamma-aminobutyric acid (GABA) levels, which may contribute to neuronal dysfunction in ND-75 knockdown flies. Several metabolic processes were only affected by strong ND-75 knockdown including the pentose phosphate pathway and the metabolite 2-hydroxyglutarate (2-HG), suggesting 2-HG as a candidate biomarker of severe neurological mitochondrial disease. Thus, our Drosophila model provides the means to dissect the mechanisms underlying phenotypic heterogeneity in mitochondrial disease.
Collapse
Affiliation(s)
- Lucy Granat
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Debbra Y. Knorr
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Daniel C. Ranson
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Ram Prosad Chakrabarty
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S. Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph M. Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
2
|
Men L, Feng J, Huang W, Xu M, Zhao X, Sun R, Xu J, Cao L. Lip cyanosis as the first symptom of Leigh syndrome associated with mitochondrial complex I deficiency due to a compound heterozygous NDUFS1 mutation: A case report. Medicine (Baltimore) 2022; 101:e30303. [PMID: 36042640 PMCID: PMC9410648 DOI: 10.1097/md.0000000000030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Leigh syndrome (LS) is a rare, progressive, and fatal neurodegenerative disease that occurs mainly in infants and children. Neonatal LS has not yet been fully described. METHODS The study design was approved by the ethics review board of Shenzhen Children's Hospital. RESULTS A 24-day-old full-term male infant presented with a 2-day history of lip cyanosis when crying in September 2021. He was born to nonconsanguineous Asian parents. After birth, the patient was fed poorly. A recurrent decrease in peripheral oxygen saturation and difficulty in weaning from mechanical ventilation during hospitalization were observed. There were no abnormalities on brain magnetic resonance imaging (MRI) or blood and urine organic acid analyses on admission. His lactic acid level increased markedly, and repeat MRI showed symmetrical abnormal signal areas in the bilateral basal ganglia and brainstem with disease progression. Trio whole-exome sequencing revealed 2 heterozygous mutations (c.64C > T [p.R22X] and c.584T > C [p.L195S]) in NDUFS1. Based on these findings, mitochondrial respiratory chain complex I deficiency-related LS was diagnosed. The patient underwent tracheal intubation and mechanical ventilation for respiratory failure. His oxygen saturation levels were maintained at normal levels with partially assisted ventilation. He was administered broad-spectrum antibiotics, oral coenzyme Q10, multivitamins, and idebenone. During hospitalization, the patient developed progressive consciousness impairment and respiratory and circulatory failure. He died on day 30. CONCLUSION Lip cyanosis is an important initial symptom in LS. Mild upper respiratory tract infections can induce LS and aggravate the disease. No abnormal changes in the brain MRI were observed in the early LS stages in this patient. Multiple MRIs and blood lactic acid tests during disease progression and genetic testing are important for prompt and accurate diagnosis of LS.
Collapse
Affiliation(s)
- Lina Men
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jinxing Feng
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Weimin Huang
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Mingguo Xu
- Department of Pediatric, the Third People’s Hospital of Longgang District, Shenzhen, China
| | - Xiaoli Zhao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Ruixin Sun
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jianfang Xu
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Liming Cao
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- * Correspondence: Liming Cao, MD, Department of Neurology, The First Affiliated Hospital of Shenzhen University, 3002 Sungang West Road, Futian District, Shenzhen City 518000, China. (e-mail: )
| |
Collapse
|
3
|
Mukherjee S, Ghosh A. Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion 2020; 53:1-20. [PMID: 32304865 DOI: 10.1016/j.mito.2020.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The mitochondrial respiratory chain (MRC) is comprised of ~92 nuclear and mitochondrial DNA-encoded protein subunits that are organized into five different multi-subunit respiratory complexes. These complexes produce 90% of the ATP required for cell sustenance. Specific sets of subunits are assembled in a modular or non-modular fashion to construct the MRC complexes. The complete assembly process is gradually chaperoned by a myriad of assembly factors that must coordinate with several other prosthetic groups to reach maturity, makingthe entire processextensively complicated. Further, the individual respiratory complexes can be integrated intovarious giant super-complexes whose functional roles have yet to be explored. Mutations in the MRC subunits and in the related assembly factors often give rise to defects in the proper assembly of the respiratory chain, which then manifests as a group of disorders called mitochondrial diseases, the most common inborn errors of metabolism. This review summarizes the current understanding of the biogenesis of individual MRC complexes and super-complexes, and explores how mutations in the different subunits and assembly factors contribute to mitochondrial disease pathology.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
4
|
Ni Y, Hagras MA, Konstantopoulou V, Mayr JA, Stuchebrukhov AA, Meierhofer D. Mutations in NDUFS1 Cause Metabolic Reprogramming and Disruption of the Electron Transfer. Cells 2019; 8:cells8101149. [PMID: 31557978 PMCID: PMC6829531 DOI: 10.3390/cells8101149] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
Complex I (CI) is the first enzyme of the mitochondrial respiratory chain and couples the electron transfer with proton pumping. Mutations in genes encoding CI subunits can frequently cause inborn metabolic errors. We applied proteome and metabolome profiling of patient-derived cells harboring pathogenic mutations in two distinct CI genes to elucidate underlying pathomechanisms on the molecular level. Our results indicated that the electron transfer within CI was interrupted in both patients by different mechanisms. We showed that the biallelic mutations in NDUFS1 led to a decreased stability of the entire N-module of CI and disrupted the electron transfer between two iron–sulfur clusters. Strikingly interesting and in contrast to the proteome, metabolome profiling illustrated that the pattern of dysregulated metabolites was almost identical in both patients, such as the inhibitory feedback on the TCA cycle and altered glutathione levels, indicative for reactive oxygen species (ROS) stress. Our findings deciphered pathological mechanisms of CI deficiency to better understand inborn metabolic errors.
Collapse
Affiliation(s)
- Yang Ni
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
- Present address: Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
| | - Muhammad A. Hagras
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA; (M.A.H.); (A.A.S.)
- Present address: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vassiliki Konstantopoulou
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johannes A. Mayr
- Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
| | - Alexei A. Stuchebrukhov
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA; (M.A.H.); (A.A.S.)
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
- Correspondence: ; Tel.: +49-30-8413-1567
| |
Collapse
|
5
|
Zhang J, Liu M, Zhang Z, Zhou L, Kong W, Jiang Y, Wang J, Xiao J, Wu Y. Genotypic Spectrum and Natural History of Cavitating Leukoencephalopathies in Childhood. Pediatr Neurol 2019; 94:38-47. [PMID: 30770271 DOI: 10.1016/j.pediatrneurol.2019.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/26/2018] [Accepted: 01/01/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND We aimed to delineate the pattern of natural course, neuroimaging features, and the genotypic spectrum of cavitating leukoencephalopathies. METHODS Children (age of onset ≤16 years) who met the criteria for cavitating leukoencephalopathies from January 2009 to October 2018 were identified. Whole-exome sequencing and prospective follow-up study of the natural history and brain magnetic resonance imaging (MRI) were performed. RESULTS Thirty-seven children were clinically diagnosed with cavitating leukoencephalopathies. Pathogenic or likely pathogenic mutations in eight genes were identified in 31 individuals (83.78%): IBA57 (17/37), NDUFS1 (5/37), NDUFV1 (2/37), NDUFV2 (3/37), NDUFAF5 (1/37), LYRM7 (1/37), NDUFB8 (1/37), and GLRX5 (1/37). All genes were engaged in mitochondrial function. IBA57 was identified in half of children. Mutations in NDUFV2, NDUFAF5, NDUFB8, or GLRX5 were first found to be related to cavitating leukoencephalopathies. Follow-up with a median of 23.5 months (four to 107 months) was available. The median age at disease onset was 11 months. All cases presented acute or subacute onset, and the initial presentation was rapid motor regression in 35 cases. Thirty-five children (35/37) exhibited a stabilized or improved pattern. Cavities and high-intensity diffusion-weighted imaging signals were the common MRI features during the acute stage. Although clinically stable, 21 children had reserved high diffusion-weighted imaging signals for a long time. Patients with different gene mutations show different MRI patterns. CONCLUSIONS The study expands the number of genes involved in cavitating leukoencephalopathies to 22. IBA57 is the most common candidate gene. Most cases showed a stabilized or improved pattern after an acute or subacute onset, which is different from most other inherited metabolic diseases or leukodystrophies. More cases and a longer follow-up period are needed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ming Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhongbin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ling Zhou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Weijing Kong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
6
|
Sonam K, Bindu PS, Srinivas Bharath MM, Govindaraj P, Gayathri N, Arvinda HR, Chiplunkar S, Nagappa M, Sinha S, Khan NA, Nunia V, Paramasivam A, Thangaraj K, Taly AB. Mitochondrial oxidative phosphorylation disorders in children: Phenotypic, genotypic and biochemical correlations in 85 patients from South India. Mitochondrion 2016; 32:42-49. [PMID: 27826120 DOI: 10.1016/j.mito.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/12/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) disorders account for a variety of neuromuscular disorders in children. In this study mitochondrial respiratory chain enzymes were assayed in muscle tissue in a large cohort of children with varied neuromuscular presentations from June 2011 to December 2013. The biochemical enzyme deficiencies were correlated with the phenotypes, magnetic resonance imaging, histopathology and genetic findings to reach a final diagnosis. There were 85 children (mean age: 6.9±4.7years, M:F:2:1) with respiratory chain enzyme deficiency which included: isolated complex I (n=50, 60%), multiple complexes (n=24, 27%), complex IV (n=8, 9%) and complex III deficiencies (n=3, 4%). The most common neurological findings were ataxia (59%), hypotonia (59%) and involuntary movements (49%). A known mitochondrial syndrome was diagnosed in 27 (29%) and non-syndromic presentations in 57 (71%). Genetic analysis included complete sequencing of mitochondrial genome, SURF1, POLG1&2. It revealed variations in mitochondrial DNA (n=8), SURF1 (n=5), and POLG1 (n=3). This study, the first of its kind from India, highlights the wide range of clinical and imaging phenotypes and genetic heterogeneity in children with mitochondrial oxidative phosphorylation disorders.
Collapse
Affiliation(s)
- Kothari Sonam
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Parayil Sankaran Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - M M Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Periyasamy Govindaraj
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Hanumanthapura R Arvinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shwetha Chiplunkar
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Vandana Nunia
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
7
|
Helman G, Caldovic L, Whitehead MT, Simons C, Brockmann K, Edvardson S, Bai R, Moroni I, Taylor JM, Van Haren K, Taft RJ, Vanderver A, van der Knaap MS. Magnetic resonance imaging spectrum of succinate dehydrogenase-related infantile leukoencephalopathy. Ann Neurol 2016; 79:379-86. [PMID: 26642834 PMCID: PMC5712845 DOI: 10.1002/ana.24572] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Succinate dehydrogenase-deficient leukoencephalopathy is a complex II-related mitochondrial disorder for which the clinical phenotype, neuroimaging pattern, and genetic findings have not been comprehensively reviewed. METHODS Nineteen individuals with succinate dehydrogenase deficiency-related leukoencephalopathy were reviewed for neuroradiological, clinical, and genetic findings as part of institutional review board-approved studies at Children's National Health System (Washington, DC) and VU University Medical Center (Amsterdam, the Netherlands). RESULTS All individuals had signal abnormalities in the central corticospinal tracts and spinal cord where imaging was available. Other typical findings were involvement of the cerebral hemispheric white matter with sparing of the U fibers, the corpus callosum with sparing of the outer blades, the basis pontis, middle cerebellar peduncles, and cerebellar white matter, and elevated succinate on magnetic resonance spectroscopy (MRS). The thalamus was involved in most studies, with a predilection for the anterior nucleus, pulvinar, and geniculate bodies. Clinically, infantile onset neurological regression with partial recovery and subsequent stabilization was typical. All individuals had mutations in SDHA, SDHB, or SDHAF1, or proven biochemical defect. INTERPRETATION Succinate dehydrogenase deficiency is a rare leukoencephalopathy, for which improved recognition by magnetic resonance imaging (MRI) in combination with advanced sequencing technologies allows noninvasive diagnostic confirmation. The MRI pattern is characterized by cerebral hemispheric white matter abnormalities with sparing of the U fibers, corpus callosum involvement with sparing of the outer blades, and involvement of corticospinal tracts, thalami, and spinal cord. In individuals with infantile regression and this pattern of MRI abnormalities, the differential diagnosis should include succinate dehydrogenase deficiency, in particular if MRS shows elevated succinate.
Collapse
Affiliation(s)
- Guy Helman
- Department of Neurology, Children's National Health System, Washington, DC, USA
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA
| | - Matthew T. Whitehead
- Department of Neuroradiology, Children's National Health System, Washington, DC, USA
| | - Cas Simons
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Knut Brockmann
- Department of Pediatrics and Pediatric Neurology, Georg-August University, Gottingen, Germany
| | - Simon Edvardson
- Neuropediatric Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Isabella Moroni
- Child Neurology Unit, The Foundation “Carlo Besta” Institute of Neurology-IRCCS, Milan, ItalyDivision of Neurology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - J. Michael Taylor
- Department of Neurology, Lucile Packard Children's Hospital and Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Ryan J. Taft
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
- School of Medicine & Health Sciences, George Washington University, Washington, DC USA
- Department of Child Neurology, VU University Medical Center, Amsterdam, NL
| | - Adeline Vanderver
- Department of Neurology, Children's National Health System, Washington, DC, USA
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA
- Department of Child Neurology, VU University Medical Center, Amsterdam, NL
| | - Marjo S. van der Knaap
- Department of Functional Genomics, Neuroscience Campus Amsterdam, Amsterdam, NL
- Department of Functional Genomics, Neuroscience Campus Amsterdam, Amsterdam, NL
| |
Collapse
|
8
|
Cameron JM, MacKay N, Feigenbaum A, Tarnopolsky M, Blaser S, Robinson BH, Schulze A. Exome sequencing identifies complex I NDUFV2 mutations as a novel cause of Leigh syndrome. Eur J Paediatr Neurol 2015; 19:525-32. [PMID: 26008862 DOI: 10.1016/j.ejpn.2015.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/12/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Two siblings with hypertrophic cardiomyopathy and brain atrophy were diagnosed with Complex I deficiency based on low enzyme activity in muscle and high lactate/pyruvate ratio in fibroblasts. METHODS Whole exome sequencing results of fibroblast gDNA from one sibling was narrowed down to 190 SNPs or In/Dels in 185 candidate genes by selecting non-synonymous coding sequence base pair changes that were not present in the SNP database. RESULTS Two compound heterozygous mutations were identified in both siblings in NDUFV2, encoding the 24 kDa subunit of Complex I. The intronic mutation (c.IVS2 + 1delGTAA) is disease causing and has been reported before. The other mutation is novel (c.669_670insG, p.Ser224Valfs*3) and predicted to cause a pathogenic frameshift in the protein. Subsequent investigation of 10 probands with complex I deficiency from different families revealed homozygosity for the intronic c.IVS2 + 1delGTAA mutation in a second, consanguineous family. In this family three of five siblings were affected. Interestingly, they presented with Leigh syndrome but no cardiac involvement. The same genotype had been reported previously in a two families but presenting with hypertrophic cardiomyopathy, trunk hypotonia and encephalopathy. CONCLUSION We have identified NDUFV2 mutations in two families with Complex I deficiency, including a novel mutation. The diagnosis of Leigh syndrome expands the clinical phenotypes associated with the c.IVS2 + 1delGTAA mutation in this gene.
Collapse
Affiliation(s)
- Jessie M Cameron
- Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Nevena MacKay
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Annette Feigenbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| | - Susan Blaser
- Department of Radiology, The Hospital for Sick Children and University of Toronto, ON M5G 1X8, Canada.
| | - Brian H Robinson
- Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Andreas Schulze
- Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
9
|
Björkman K, Sofou K, Darin N, Holme E, Kollberg G, Asin-Cayuela J, Holmberg Dahle KM, Oldfors A, Moslemi AR, Tulinius M. Broad phenotypic variability in patients with complex I deficiency due to mutations in NDUFS1 and NDUFV1. Mitochondrion 2015; 21:33-40. [DOI: 10.1016/j.mito.2015.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
10
|
Invernizzi F, Ardissone A, Lamantea E, Garavaglia B, Zeviani M, Farina L, Ghezzi D, Moroni I. Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations. Front Genet 2014; 5:412. [PMID: 25477904 PMCID: PMC4238403 DOI: 10.3389/fgene.2014.00412] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 11/06/2014] [Indexed: 11/13/2022] Open
Abstract
Multiple Mitochondrial Dysfunction Syndrome (MMDS) comprises a group of severe autosomal recessive diseases with onset in early infancy and characterized by a systemic disorder of energy metabolism, resulting in weakness, respiratory failure, lack of neurological development, lactic acidosis, and early death. Biochemical findings include defects of complexes I, II, and III of the mitochondrial respiratory chain and severe deficiency of Pyruvate dehydrogenase complex (PDHc). Three genes have been associated with MMDS since now: NFU1, BOLA3, and IBA57. We describe an Italian male patient presenting with severe psychomotor regression after an infectious episode, lactic acidosis, hyperglycinemia, reduction of respiratory chain complex II associated with a marked deficiency of PDHc activity. He carried two heterozygous mutations in NFU1, one novel (p.Cys210Phe) and one previously reported (p.Gly189Arg) missense change affecting highly conserved residues. A severe leukoencephalopathy with cavitations in deep white matter was disclosed at brain MRI, suggesting a peculiar neuroradiological phenotype associated with defect in this gene.
Collapse
Affiliation(s)
- Federica Invernizzi
- Unit of Molecular Neurogenetics, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Anna Ardissone
- Unit of Child Neurology, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Eleonora Lamantea
- Unit of Molecular Neurogenetics, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Barbara Garavaglia
- Unit of Molecular Neurogenetics, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Laura Farina
- Unit of Neuroradiology, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Isabella Moroni
- Unit of Child Neurology, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| |
Collapse
|