1
|
Hedges EC, Cocks G, Shaw CE, Nishimura AL. Generation of an Open-Access Patient-Derived iPSC Biobank for Amyotrophic Lateral Sclerosis Disease Modelling. Genes (Basel) 2023; 14:1108. [PMID: 37239468 PMCID: PMC10218399 DOI: 10.3390/genes14051108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting the upper and lower motor neurons, causing patients to lose control over voluntary movement, and leading to gradual paralysis and death. There is no cure for ALS, and the development of viable therapeutics has proved challenging, demonstrated by a lack of positive results from clinical trials. One strategy to address this is to improve the tool kit available for pre-clinical research. Here, we describe the creation of an open-access ALS iPSC biobank generated from patients carrying mutations in the TARDBP, FUS, ANXA11, ARPP21, and C9ORF72 genes, alongside healthy controls. To demonstrate the utilisation of these lines for ALS disease modelling, a subset of FUS-ALS iPSCs were differentiated into functionally active motor neurons. Further characterisation revealed an increase in cytoplasmic FUS protein and reduced neurite outgrowth in FUS-ALS motor neurons compared to the control. This proof-of-principle study demonstrates that these novel patient-derived iPSC lines can recapitulate specific and early disease-related ALS phenotypes. This biobank provides a disease-relevant platform for discovery of ALS-associated cellular phenotypes to aid the development of novel treatment strategies.
Collapse
Affiliation(s)
- Erin C. Hedges
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Rd., London SE5 9RT, UK;
| | - Graham Cocks
- Genome Editing and Embryology Core, King’s College London, London SE1 1UL, UK;
| | - Christopher E. Shaw
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Rd., London SE5 9RT, UK;
- Centre for Brain Research, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Agnes L. Nishimura
- United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Rd., London SE5 9RT, UK;
- Blizard Institute, Neuroscience, Surgery and Trauma, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|
2
|
Zimyanin VL, Pielka AM, Glaß H, Japtok J, Großmann D, Martin M, Deussen A, Szewczyk B, Deppmann C, Zunder E, Andersen PM, Boeckers TM, Sterneckert J, Redemann S, Storch A, Hermann A. Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons. Cells 2023; 12:1352. [PMID: 37408187 PMCID: PMC10216752 DOI: 10.3390/cells12101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 07/07/2023] Open
Abstract
Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Vitaly L Zimyanin
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna-Maria Pielka
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dajana Großmann
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Melanie Martin
- Institute of Physiology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Barbara Szewczyk
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Chris Deppmann
- Department of Biology, Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22902, USA
| | - Eli Zunder
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, VA 22902, USA
| | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Tobias M Boeckers
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm Site, 89081 Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Jared Sterneckert
- Centre for Regenerative Therapie, Technische Universität Dresden, 01307 Dresden, Germany
- Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22902, USA
| | - Alexander Storch
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Centre, University of Rostock, 18147 Rostock, Germany
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Centre, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
3
|
Du H, Huo Z, Chen Y, Zhao Z, Meng F, Wang X, Liu S, Zhang H, Zhou F, Liu J, Zhang L, Zhou S, Guan Y, Wang X. Induced Pluripotent Stem Cells and Their Applications in Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12060971. [PMID: 36980310 PMCID: PMC10047679 DOI: 10.3390/cells12060971] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in the loss of motor function in the central nervous system (CNS) and ultimately death. The mechanisms underlying ALS pathogenesis have not yet been fully elucidated, and ALS cannot be treated effectively. Most studies have applied animal or single-gene intervention cell lines as ALS disease models, but they cannot accurately reflect the pathological characteristics of ALS. Induced pluripotent stem cells (iPSCs) can be reprogrammed from somatic cells, possessing the ability to self-renew and differentiate into a variety of cells. iPSCs can be obtained from ALS patients with different genotypes and phenotypes, and the genetic background of the donor cells remains unchanged during reprogramming. iPSCs can differentiate into neurons and glial cells related to ALS. Therefore, iPSCs provide an excellent method to evaluate the impact of diseases on ALS patients. Moreover, patient-derived iPSCs are obtained from their own somatic cells, avoiding ethical concerns and posing only a low risk of immune rejection. The iPSC technology creates new hope for ALS treatment. Here, we review recent studies on iPSCs and their applications in disease modeling, drug screening and cell therapy in ALS, with a particular focus on the potential for ALS treatment.
Collapse
Affiliation(s)
- Hongmei Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zhenhan Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Fandi Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Xuemei Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Shiyue Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Shuanhu Zhou
- Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA
| | - Yingjun Guan
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Xin Wang
- Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Biomarkers in Human Peripheral Blood Mononuclear Cells: The State of the Art in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms23052580. [PMID: 35269723 PMCID: PMC8910056 DOI: 10.3390/ijms23052580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the progressive loss of lower motor neurons, weakness and muscle atrophy. ALS lacks an effective cure and diagnosis is often made by exclusion. Thus, it is imperative to search for biomarkers. Biomarkers can help in understanding ALS pathomechanisms, identification of targets for treatment and development of effective therapies. Peripheral blood mononuclear cells (PBMCs) represent a valid source for biomarkers compared to cerebrospinal fluid, as they are simple to collect, and to plasma, because of the possibility of detecting lower expressed proteins. They are a reliable model for patients’ stratification. This review provides an overview on PBMCs as a potential source of biomarkers in ALS. We focused on altered RNA metabolism (coding/non-coding RNA), including RNA processing, mRNA stabilization, transport and translation regulation. We addressed protein abnormalities (aggregation, misfolding and modifications); specifically, we highlighted that SOD1 appears to be the most characterizing protein in ALS. Finally, we emphasized the correlation between biological parameters and disease phenotypes, as regards prognosis, severity and clinical features. In conclusion, even though further studies are needed to standardize the use of PBMCs as a tool for biomarker investigation, they represent a promising approach in ALS research.
Collapse
|
5
|
Induced pluripotent stem cell-derived motor neurons from amyotrophic lateral sclerosis (ALS) patients carrying different superoxide dismutase 1 mutations recapitulate pathological features of ALS. Chin Med J (Engl) 2021; 134:2457-2464. [PMID: 34669638 PMCID: PMC8654443 DOI: 10.1097/cm9.0000000000001693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Investigations of the pathogenic mechanisms in motor neurons (MNs) derived from amyotrophic lateral sclerosis (ALS) disease-specific induced pluripotent stem (iPS) cell lines could improve understanding of the issues affecting MNs. Therefore, in this study we explored mutant superoxide dismutase 1 (SOD1) protein expression in MNs derived from the iPS cell lines of ALS patients carrying different SOD1 mutations. Methods: We generated induced pluripotent stem cell (iPSC) lines from two familial ALS (FALS) patients with SOD1-V14M and SOD1-C111Y mutations, and then differentiated them into MNs. We investigated levels of the SOD1 protein in iPSCs and MNs, the intracellular Ca2+ levels in MNs, and the lactate dehydrogenase (LDH) activity in the process of differentiation into the MNs derived from the controls and ALS patients’ iPSCs. Results: The iPSCs from the two FALS patients were capable of differentiation into MNs carrying different SOD1 mutations and differentially expressed MN markers. We detected high SOD1 protein expression and high intracellular calcium levels in both the MN and iPSCs that were derived from the two SOD1 mutant patients. However, at no time did we observe stronger LDH activity in the patient lines compared with the control lines. Conclusions: MNs derived from patient-specific iPSC lines can recapitulate key aspects of ALS pathogenesis, providing a cell-based disease model to further elucidate disease pathogenesis and explore gene repair coupled with cell-replacement therapy. Incremental mutant expressions of SOD1 in MNs may have disrupted MN function, either causing or contributing to the intracellular calcium disturbances, which could lead to the occurrence and development of the disease.
Collapse
|
6
|
Liu W, Li X, Sun Y, Yu X, Wang Y, Liu N, Deng M. Genotype-phenotype correlations in a chinese population with familial amyotrophic lateral sclerosis. Neurol Res 2021; 44:206-216. [PMID: 34431456 DOI: 10.1080/01616412.2021.1968706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: This study aimed to determine the distribution of the most commonly mutated genes (SOD1, TARDBP, FUS/TLS, and C9ORF72) associated with familial amyotrophic lateral sclerosis (FALS) and the association between genotype and phenotype in 242 Chinese patients.Methods: A total of 58 families were screened for ALS-associated mutations in SOD1,TARDBP, FUS, and C9ORF72 hexanucleotide repeat expansion. These mutations were analyzed to evaluate the relationship between genotype and phenotype in Chinese FALS patients.Results: Partial clinical data were obtained for 242 relatives of the 58 analyzed families, with a male-to-female ratio of 1.2:1 and a mean age of disease onset of 45.9±12.0 (13-80) years. 26 mutations associated with pathogenesis were identified in 32 probands from 58 different families. Mutations in SOD1, FUS, TARDBP, and C9ORF72 accounted for 32.8%, 12.1%, 8.6%, and 1.7% of FALS, respectively. FALS patients showed longer survival times; however, bulbar-onset ALS and the male-to-female ratio for them were lower than those reported previously. The site of onset, age of onset, and lifespan differed in FALS patients with SOD1, TARDBP, and FUS mutations.Discussion: In this study, patients with SOD1 mutations exhibited heterogeneous survival times that showed a bimodal distribution, while patients with FUS mutations showed rapid disease progression. Our results showed the relative contributions of the different types of mutations associated with ALS and provided phenotype-genotype correlations with clinical features in Chinese patients.
Collapse
Affiliation(s)
- WenChao Liu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - XiaoGang Li
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Yan Sun
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - XiaoTong Yu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yan Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Na Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Zhao A, Pan Y, Cai S. Patient-Specific Cells for Modeling and Decoding Amyotrophic Lateral Sclerosis: Advances and Challenges. Stem Cell Rev Rep 2021; 16:482-502. [PMID: 31916190 DOI: 10.1007/s12015-019-09946-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Motor neuron loss or degeneration is the typical characteristic of amyotrophic lateral sclerosis (ALS), which often leads to weakness, paralysis, or even death. The underlying mechanisms of motor neuron degeneration and ALS progression remain elusive, and there is no effective treatment for ALS. The advances of stem cells and reprogramming techniques has made it possible to generate patient-specific motor neurons as cell models for studying disease mechanisms and drug discovery. This review comprehensively discusses recent approaches to generate motor neurons from stem cells and somatic cells and highlights the application of induced motor neurons to modeling ALS diseases, dissecting the pathogenesis, and screening new drugs. New perspectives are also discussed on generating patient-specific motor neuron subtypes that are affected by ALS or creating 3D spinal cord organoid models for better recapitulating and understanding ALS.
Collapse
Affiliation(s)
- Andong Zhao
- Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yu Pan
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, 518101, China.
| | - Sa Cai
- Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
8
|
Nogami M, Ishikawa M, Doi A, Sano O, Sone T, Akiyama T, Aoki M, Nakanishi A, Ogi K, Yano M, Okano H. Identification of hub molecules of FUS-ALS by Bayesian gene regulatory network analysis of iPSC model: iBRN. Neurobiol Dis 2021; 155:105364. [PMID: 33857636 DOI: 10.1016/j.nbd.2021.105364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Fused in sarcoma/translated in liposarcoma (FUS) is a causative gene of amyotrophic lateral sclerosis (ALS). Mutated FUS causes accumulation of DNA damage and cytosolic stress granule (SG) formation, thereby motor neuron (MN) death. However, key molecular aetiology remains unclear. Here, we applied a novel platform technology, iBRN, "Non- biased" Bayesian gene regulatory network analysis based on induced pluripotent stem cell (iPSC)-derived cell model, to elucidate the molecular aetiology using transcriptome of iPSC-derived MNs harboring FUSH517D. iBRN revealed "hub molecules", which strongly influenced transcriptome network, such as miR-125b-5p-TIMELESS axis and PRKDC for the molecular aetiology. Next, we confirmed miR-125b-5p-TIMELESS axis in FUSH517D MNs such that miR-125b-5p regulated several DNA repair-related genes including TIMELESS. In addition, we validated both introduction of miR-125b-5p and knocking down of TIMELESS caused DNA damage in the cell culture model. Furthermore, PRKDC was strongly associated with FUS mis-localization into SGs by DNA damage under impaired DNA-PK activity. Collectively, our iBRN strategy provides the first compelling evidence to elucidate molecular aetiology in neurodegenerative diseases.
Collapse
Affiliation(s)
- Masahiro Nogami
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan; Shonan Incubation Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan.
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | - Osamu Sano
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Atsushi Nakanishi
- Shonan Incubation Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan
| | - Kazuhiro Ogi
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan; Shonan Incubation Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa 251-8555, Japan
| | - Masato Yano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
9
|
Cappella M, Elouej S, Biferi MG. The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor Neuron Disorders. Front Cell Dev Biol 2021; 9:662837. [PMID: 33937264 PMCID: PMC8080375 DOI: 10.3389/fcell.2021.662837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) represents a major advance for the development of human disease models. The emerging of this technique fostered the concept of "disease in a dish," which consists into the generation of patient-specific models in vitro. Currently, iPSCs are used to study pathological molecular mechanisms caused by genetic mutations and they are considered a reliable model for high-throughput drug screenings. Importantly, precision-medicine approaches to treat monogenic disorders exploit iPSCs potential for the selection and validation of lead candidates. For example, antisense oligonucleotides (ASOs) were tested with promising results in myoblasts or motor neurons differentiated from iPSCs of patients affected by either Duchenne muscular dystrophy or Amyotrophic lateral sclerosis. However, the use of iPSCs needs additional optimization to ensure translational success of the innovative strategies based on gene delivery through adeno associated viral vectors (AAV) for these diseases. Indeed, to establish an efficient transduction of iPSCs with AAV, several aspects should be optimized, including viral vector serotype, viral concentration and timing of transduction. This review will outline the use of iPSCs as a model for the development and testing of gene therapies for neuromuscular and motor neuron disorders. It will then discuss the advantages for the use of this versatile tool for gene therapy, along with the challenges associated with the viral vector transduction of iPSCs.
Collapse
Affiliation(s)
- Marisa Cappella
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Sahar Elouej
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Maria Grazia Biferi
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
10
|
de Leeuw VC, van Oostrom CTM, Imholz S, Piersma AH, Hessel EVS, Dollé MET. Going Back and Forth: Episomal Vector Reprogramming of Peripheral Blood Mononuclear Cells to Induced Pluripotent Stem Cells and Subsequent Differentiation into Cardiomyocytes and Neuron-Astrocyte Co-cultures. Cell Reprogram 2020; 22:300-310. [PMID: 33146557 PMCID: PMC7757589 DOI: 10.1089/cell.2020.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) can capture the diversity in the general human population as well as provide deeper insight in cellular mechanisms. This makes them suitable to study both fundamental and applied research subjects, such as disease modeling, gene-environment interactions, personalized medicine, and chemical toxicity. In an independent laboratory, we were able to generate iPSCs originating from human peripheral blood mononuclear cells according to a modified version of a temporal episomal vector (EV)-based induction method. The iPSCs could subsequently be differentiated into two different lineages: mesoderm-derived cardiomyocytes and ectoderm-derived neuron-astrocyte co-cultures. It was shown that the neuron-astrocyte culture developed a mature phenotype within the course of five weeks and depending on the medium composition, network formation and neuron-astrocyte cell ratios could be modified. Although previously it has been described that iPSCs generated with this EV-based induction protocol could differentiate to mesenchymal stem cells, hepatocytes, cardiomyocytes, and basic neuronal cultures, we now demonstrate differentiation into a culture containing both neurons and astrocytes.
Collapse
Affiliation(s)
- Victoria C de Leeuw
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Conny T M van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Sandra Imholz
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
11
|
Vasques JF, Mendez-Otero R, Gubert F. Modeling ALS using iPSCs: is it possible to reproduce the phenotypic variations observed in patients in vitro? Regen Med 2020; 15:1919-1933. [PMID: 32795164 DOI: 10.2217/rme-2020-0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease that leads to progressive degeneration of motoneurons. Mutations in the C9ORF72, SOD1, TARDBP and FUS genes, among others, have been associated with ALS. Although motoneuron degeneration is the common outcome of ALS, different pathological mechanisms seem to be involved in this process, depending on the genotypic background of the patient. The advent of induced pluripotent stem cell (iPSC) technology enabled the development of patient-specific cell lines, from which it is possible to generate different cell types and search for phenotypic alterations. In this review, we summarize the pathophysiological markers detected in cells differentiated from iPSCs of ALS patients. In a translational perspective, iPSCs from ALS patients could be useful for drug screening, through stratifying patients according to their genetic background.
Collapse
Affiliation(s)
- Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa
| | - Fernanda Gubert
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa.,Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Yun Y, Ha Y. CRISPR/Cas9-Mediated Gene Correction to Understand ALS. Int J Mol Sci 2020; 21:E3801. [PMID: 32471232 PMCID: PMC7312396 DOI: 10.3390/ijms21113801] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the death of motor neurons in the spinal cord and brainstem. ALS has a diverse genetic origin; at least 20 genes have been shown to be related to ALS. Most familial and sporadic cases of ALS are caused by variants of the SOD1, C9orf72, FUS, and TARDBP genes. Genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9) can provide insights into the underlying genetics and pathophysiology of ALS. By correcting common mutations associated with ALS in animal models and patient-derived induced pluripotent stem cells (iPSCs), CRISPR/Cas9 has been used to verify the effects of ALS-associated mutations and observe phenotype differences between patient-derived and gene-corrected iPSCs. This technology has also been used to create mutations to investigate the pathophysiology of ALS. Here, we review recent studies that have used CRISPR/Cas9 to understand the genetic underpinnings of ALS.
Collapse
Affiliation(s)
- Yeomin Yun
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Korea;
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Korea;
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
13
|
Yousefi N, Abdollahii S, Kouhbanani MAJ, Hassanzadeh A. Induced pluripotent stem cells (iPSCs) as game-changing tools in the treatment of neurodegenerative disease: Mirage or reality? J Cell Physiol 2020; 235:9166-9184. [PMID: 32437029 DOI: 10.1002/jcp.29800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
Based on investigations, there exist tight correlations between neurodegenerative diseases' incidence and progression and aberrant protein aggregreferates in nervous tissue. However, the pathology of these diseases is not well known, leading to an inability to find an appropriate therapeutic approach to delay occurrence or slow many neurodegenerative diseases' development. The accessibility of induced pluripotent stem cells (iPSCs) in mimicking the phenotypes of various late-onset neurodegenerative diseases presents a novel strategy for in vitro disease modeling. The iPSCs provide a valuable and well-identified resource to clarify neurodegenerative disease mechanisms, as well as prepare a promising human stem cell platform for drug screening. Undoubtedly, neurodegenerative disease modeling using iPSCs has established innovative opportunities for both mechanistic types of research and recognition of novel disease treatments. Most important, the iPSCs have been considered as a novel autologous cell origin for cell-based therapy of neurodegenerative diseases following differentiation to varied types of neural lineage cells (e.g. GABAergic neurons, dopamine neurons, cortical neurons, and motor neurons). In this review, we summarize iPSC-based disease modeling in neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Moreover, we discuss the efficacy of cell-replacement therapies for neurodegenerative disease.
Collapse
Affiliation(s)
- Niloufar Yousefi
- Department of Physiology and Pharmacology, Pasteur Instittableute of Iran, Tehran, Iran.,Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahla Abdollahii
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Yang S, Wu S, Fifita J, McCann E, Fat SCM, Galper J, Freckleton S, Zhang KY, Blair IP. Theme 3 In vitro experimental models. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:135-159. [PMID: 31702460 DOI: 10.1080/21678421.2019.1646991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Ongoing disease gene discoveries continue to drive our understanding of the molecular and cellular mechanisms underlying ALS. Causative genes from 60% of ALS families have been identified using modern genetic techniques, but the causal gene defect is yet to be identified in the remaining 40% of families. These remaining families often do not follow true Mendelian inheritance patterns and are challenging to solve using traditional genetic analysis alone. In vitro and in vivo studies have become critical in assessing and validating these ALS candidate genes.Objectives: In this study, we aim to develop and validate the utility of an in vitro functional pipeline for the discovery and validation of novel ALS candidate genes.Methods: A panel of cell based-assays were applied to candidate genes to examine the presence/absence of known ALS pathologies in cell lines as well as human autopsy tissues. These include immunofluorescence, flow cytometry and western blotting to study toxicity, neuronal inclusion formation, interaction with TDP-43, aberrant protein degradation and accumulation in detergent-insoluble cellular fractions. Immunohistochemistry and immunofluorescence were also used to examine if candidates were present in neuronal inclusions from ALS patient spinal cord tissues.Results: The in vitro pipeline was applied to five candidate genes from an ALS family that is negative for known ALS gene mutations. Two candidates were prioritized as top candidates based on their capacity to induce known ALS cellular pathologies. In transfected cells, the variants in these two genes caused a significantly higher toxicity than wild type, formed detergent insoluble inclusions and was able to co-aggregate with TDP-43 in neuronal cells. The variants have also led to protein degradation defects. One of the candidates also co-localised with TDP-43-positive neuronal inclusions in sporadic ALS patient post-mortem tissues, a signature pathology of ALS.Discussion and conclusions: We have demonstrated the utility of a functional prioritization pipeline and successfully prioritized two novel candidate ALS genes. These genes, and its associated pathways, will be further investigated through the development of animal models to establish if there is support for its role in ALS. New ALS genes offer fresh diagnostic and therapeutic targets and tools for the generation of novel animal models to better understand disease biology and offer preclinical testing of candidate treatments for ALS in the future.
Collapse
Affiliation(s)
- Shu Yang
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Sharlynn Wu
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Jennifer Fifita
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Emily McCann
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Sandrine Chan Moi Fat
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Jasmin Galper
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Sarah Freckleton
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Kathrine Y Zhang
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ian P Blair
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
15
|
Mazzini L, Ferrari D, Andjus PR, Buzanska L, Cantello R, De Marchi F, Gelati M, Giniatullin R, Glover JC, Grilli M, Kozlova EN, Maioli M, Mitrečić D, Pivoriunas A, Sanchez-Pernaute R, Sarnowska A, Vescovi AL. Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2019; 18:865-881. [PMID: 30025485 DOI: 10.1080/14712598.2018.1503248] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a progressive, incurable neurodegenerative disease that targets motoneurons. Cell-based therapies have generated widespread interest as a potential therapeutic approach but no conclusive results have yet been reported either from pre-clinical or clinical studies. AREAS COVERED This is an integrated review of pre-clinical and clinical studies focused on the development of cell-based therapies for ALS. We analyze the biology of stem cell treatments and results obtained from pre-clinical models of ALS and examine the methods and the results obtained to date from clinical trials. We discuss scientific, clinical, and ethical issues and propose some directions for future studies. EXPERT OPINION While data from individual studies are encouraging, stem-cell-based therapies do not yet represent a satisfactory, reliable clinical option. The field will critically benefit from the introduction of well-designed, randomized and reproducible, powered clinical trials. Comparative studies addressing key issues such as the nature, properties, and number of donor cells, the delivery mode and the selection of proper patient populations that may benefit the most from cell-based therapies are now of the essence. Multidisciplinary networks of experts should be established to empower effective translation of research into the clinic.
Collapse
Affiliation(s)
- Letizia Mazzini
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Daniela Ferrari
- b Department of Biotechnology and Biosciences , University Milano Bicocca , Milano , Italy
| | - Pavle R Andjus
- c Center for laser microscopy, Faculty of Biology , University of Belgrade , Belgrade , Serbia
| | - Leonora Buzanska
- d Stem Cell Bioengineering Unit , Mossakowski Medical Research Center, Polish Academy of Sciences , Warsaw , Poland
| | - Roberto Cantello
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Fabiola De Marchi
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Maurizio Gelati
- e Scientific Direction , IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo , Foggia , Italy.,f Cell Factory e biobanca, Fondazione Cellule Staminali , Terni , Italy
| | - Rashid Giniatullin
- g A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Neulaniementie 2, Kuopio , FINLAND
| | - Joel C Glover
- h Department of Molecular Medicine , Institute of Basic Medical Sciences, University of Oslo and Norwegian Center for Stem Cell Research, Oslo University Hospital , Oslo , Norway
| | - Mariagrazia Grilli
- i Department Pharmaceutical Sciences , Laboratory of Neuroplasticity, University of Piemonte Orientale , Novara , Italy
| | - Elena N Kozlova
- j Department of Neuroscience , Uppsala University Biomedical Centre , Uppsala , Sweden
| | - Margherita Maioli
- k Department of Biomedical Sciences and Center for Developmental Biology and Reprogramming (CEDEBIOR) , University of Sassari, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR) , Sassari , Italy
| | - Dinko Mitrečić
- l Laboratory for Stem Cells, Croatian Institute for Brain Research , University of Zagreb School of Medicine , Zagreb , Croatia
| | - Augustas Pivoriunas
- m Department of Stem Cell Biology , State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania
| | - Rosario Sanchez-Pernaute
- n Preclinical Research , Andalusian Initiative for Advanced Therapies, Andalusian Health Ministry , Sevilla , Spain
| | - Anna Sarnowska
- d Stem Cell Bioengineering Unit , Mossakowski Medical Research Center, Polish Academy of Sciences , Warsaw , Poland
| | - Angelo L Vescovi
- b Department of Biotechnology and Biosciences , University Milano Bicocca , Milano , Italy.,f Cell Factory e biobanca, Fondazione Cellule Staminali , Terni , Italy
| | | |
Collapse
|
16
|
Bossolasco P, Sassone F, Gumina V, Peverelli S, Garzo M, Silani V. Motor neuron differentiation of iPSCs obtained from peripheral blood of a mutant TARDBP ALS patient. Stem Cell Res 2018; 30:61-68. [PMID: 29800782 DOI: 10.1016/j.scr.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/24/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease, mainly affecting the motor neurons (MNs) and without effective therapy. Drug screening is hampered by the lack of satisfactory experimental and pre-clinical models. Induced pluripotent stem cells (iPSCs) could help to define disease mechanisms and therapeutic strategies as they could be differentiated into MNs, otherwise inaccessible from living humans. In this study, given the seminal role of TDP-43 in ALS pathophysiology, MNs were obtained from peripheral blood mononuclear cells-derived iPSCs of an ALS patient carrying a p.A382T TARDBP mutation and a healthy donor. Venous samples were preferred to fibroblasts for their ease of collection and no requirement for time consuming extended cultures before experimentation. iPSCs were characterized for expression of specific markers, spontaneously differentiated into primary germ layers and, finally, into MNs. No differences were observed between the mutated ALS patient and the control MNs with most of the cells displaying a nuclear localization of the TDP-43 protein. In conclusion, we here demonstrated for the first time that human TARDBP mutated MNs can be successfully obtained exploiting the reprogramming and differentiation ability of peripheral blood cells, an easily accessible source from any patient.
Collapse
Affiliation(s)
- Patrizia Bossolasco
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan and Via Zucchi 18, Cusano Milanino, Italy.
| | - Francesca Sassone
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan and Via Zucchi 18, Cusano Milanino, Italy
| | - Valentina Gumina
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan and Via Zucchi 18, Cusano Milanino, Italy; "Dino Ferrari" Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan and Via Zucchi 18, Cusano Milanino, Italy
| | - Maria Garzo
- Lab. di Citogenetica Medica, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, Milan and Via Zucchi 18, Cusano Milanino, Italy; "Dino Ferrari" Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan, Italy
| |
Collapse
|
17
|
Guo W, Fumagalli L, Prior R, Van Den Bosch L. Current Advances and Limitations in Modeling ALS/FTD in a Dish Using Induced Pluripotent Stem Cells. Front Neurosci 2017; 11:671. [PMID: 29326542 PMCID: PMC5733489 DOI: 10.3389/fnins.2017.00671] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two age-dependent multifactorial neurodegenerative disorders, which are typically characterized by the selective death of motor neurons and cerebral cortex neurons, respectively. These two diseases share many clinical, genetic and pathological aspects. During the past decade, cell reprogramming technologies enabled researchers to generate human induced pluripotent stem cells (iPSCs) from somatic cells. This resulted in the unique opportunity to obtain specific neuronal and non-neuronal cell types from patients which could be used for basic research. Moreover, these in vitro models can mimic not only the familial forms of ALS/FTD, but also sporadic cases without known genetic cause. At present, there have been extensive technical advances in the generation of iPSCs, as well as in the differentiation procedures to obtain iPSC-derived motor neurons, cortical neurons and non-neuronal cells. The major challenge at this moment is to determine whether these iPSC-derived cells show relevant phenotypes that recapitulate complex diseases. In this review, we will summarize the work related to iPSC models of ALS and FTD. In addition, we will discuss potential drawbacks and solutions for establishing more trustworthy iPSC models for both ALS and FTD.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease, Leuven, Belgium.,Laboratory of Neurobiology, VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Laura Fumagalli
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease, Leuven, Belgium.,Laboratory of Neurobiology, VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Robert Prior
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease, Leuven, Belgium.,Laboratory of Neurobiology, VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease, Leuven, Belgium.,Laboratory of Neurobiology, VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| |
Collapse
|
18
|
HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 2017; 8:861. [PMID: 29021520 PMCID: PMC5636840 DOI: 10.1038/s41467-017-00911-y] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder due to selective loss of motor neurons (MNs). Mutations in the fused in sarcoma (FUS) gene can cause both juvenile and late onset ALS. We generated and characterized induced pluripotent stem cells (iPSCs) from ALS patients with different FUS mutations, as well as from healthy controls. Patient-derived MNs show typical cytoplasmic FUS pathology, hypoexcitability, as well as progressive axonal transport defects. Axonal transport defects are rescued by CRISPR/Cas9-mediated genetic correction of the FUS mutation in patient-derived iPSCs. Moreover, these defects are reproduced by expressing mutant FUS in human embryonic stem cells (hESCs), whereas knockdown of endogenous FUS has no effect, confirming that these pathological changes are mutant FUS dependent. Pharmacological inhibition as well as genetic silencing of histone deacetylase 6 (HDAC6) increase α-tubulin acetylation, endoplasmic reticulum (ER)–mitochondrial overlay, and restore the axonal transport defects in patient-derived MNs. Amyotrophic lateral sclerosis (ALS) leads to selective loss of motor neurons. Using motor neurons derived from induced pluripotent stem cells from patients with ALS and FUS mutations, the authors demonstrate that axonal transport deficits that are observed in these cells can be rescued by HDAC6 inhibition.
Collapse
|
19
|
CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 2017; 8:365-378. [PMID: 28401346 PMCID: PMC5413600 DOI: 10.1007/s13238-017-0397-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1+/A272C and FUS+/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis of motor neurons derived from SOD1+/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.
Collapse
|
20
|
Simple Derivation of Spinal Motor Neurons from ESCs/iPSCs Using Sendai Virus Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:115-125. [PMID: 28344997 PMCID: PMC5363292 DOI: 10.1016/j.omtm.2016.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal degenerative disorder of motor neurons (MNs). Embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) now help us to understand the pathomechanisms of ALS via disease modeling. Various methods to differentiate ESCs/iPSCs into MNs by the addition of signaling molecules have been reported. However, classical methods require multiple steps, and newer simple methods using the transduction of transcription factors run the risk of genomic integration of the vector genes. Heterogeneity of the expression levels of the transcription factors also remains an issue. Here we describe a novel approach for differentiating human and mouse ESCs/iPSCs into MNs using a single Sendai virus vector encoding three transcription factors, LIM/homeobox protein 3, neurogenin 2, and islet-1, which are integration free. This single-vector method, generating HB9-positive cells on day 2 from human iPSCs, increases the ratio of MNs to neurons compared to the use of three separate Sendai virus vectors. In addition, the MNs derived via this method from iPSCs of ALS patients and model mice display disease phenotypes. This simple approach significantly reduces the efforts required to generate MNs, and it provides a useful tool for disease modeling.
Collapse
|
21
|
Jaiswal MK. Therapeutic opportunities and challenges of induced pluripotent stem cells-derived motor neurons for treatment of amyotrophic lateral sclerosis and motor neuron disease. Neural Regen Res 2017; 12:723-736. [PMID: 28616022 PMCID: PMC5461603 DOI: 10.4103/1673-5374.206635] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and motor neuron diseases (MNDs) are progressive neurodegenerative diseases that affect nerve cells in the brain affecting upper and lower motor neurons (UMNs/LMNs), brain stem and spinal cord. The clinical phenotype is characterized by loss of motor neurons (MNs), muscular weakness and atrophy eventually leading to paralysis and death due to respiratory failure within 3-5 years after disease onset. No effective treatment or cure is currently available that halts or reverses ALS and MND except FDA approved drug riluzole that only modestly slows the progression of ALS in some patients. Recent advances in human derived induced pluripotent stem cells have made it possible for the first time to obtain substantial amounts of human cells to recapitulate in vitro "disease in dish" and test some of the underlying pathogenetic mechanisms involved in ALS and MNDs. In this review, I discussed the opportunities and challenges of induced pluropotent stem cells-derived motor neurons for treatment of ALS and MND patients with special emphasis on their implications in finding a cure for ALS and MNDs.
Collapse
Affiliation(s)
- Manoj Kumar Jaiswal
- Molecular Imaging and Neuropathology Division, New York State Psychiatry Institute, Columbia University, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Higelin J, Demestre M, Putz S, Delling JP, Jacob C, Lutz AK, Bausinger J, Huber AK, Klingenstein M, Barbi G, Speit G, Huebers A, Weishaupt JH, Hermann A, Liebau S, Ludolph AC, Boeckers TM. FUS Mislocalization and Vulnerability to DNA Damage in ALS Patients Derived hiPSCs and Aging Motoneurons. Front Cell Neurosci 2016; 10:290. [PMID: 28082870 PMCID: PMC5183648 DOI: 10.3389/fncel.2016.00290] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Mutations within the FUS gene (Fused in Sarcoma) are known to cause Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease affecting upper and lower motoneurons. The FUS gene codes for a multifunctional RNA/DNA-binding protein that is primarily localized in the nucleus and is involved in cellular processes such as splicing, translation, mRNA transport and DNA damage response. In this study, we analyzed pathophysiological alterations associated with ALS related FUS mutations (mFUS) in human induced pluripotent stem cells (hiPSCs) and hiPSC derived motoneurons. To that end, we compared cells carrying a mild or severe mFUS in physiological- and/or stress conditions as well as after induced DNA damage. Following hyperosmolar stress or irradiation, mFUS hiPS cells recruited significantly more cytoplasmatic FUS into stress granules accompanied by impaired DNA-damage repair. In motoneurons wild-type FUS was localized in the nucleus but also deposited as small punctae within neurites. In motoneurons expressing mFUS the protein was additionally detected in the cytoplasm and a significantly increased number of large, densely packed FUS positive stress granules were seen along neurites. The amount of FUS mislocalization correlated positively with both the onset of the human disease (the earlier the onset the higher the FUS mislocalization) and the maturation status of the motoneurons. Moreover, even in non-stressed post-mitotic mFUS motoneurons clear signs of DNA-damage could be detected. In summary, we found that the susceptibility to cell stress was higher in mFUS hiPSCs and hiPSC derived motoneurons than in controls and the degree of FUS mislocalization correlated well with the clinical severity of the underlying ALS related mFUS. The accumulation of DNA damage and the cellular response to DNA damage stressors was more pronounced in post-mitotic mFUS motoneurons than in dividing hiPSCs suggesting that mFUS motoneurons accumulate foci of DNA damage, which in turn might be directly linked to neurodegeneration.
Collapse
Affiliation(s)
- Julia Higelin
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | - Maria Demestre
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | - Stefan Putz
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; Department of Neurology, Ulm UniversityUlm, Germany
| | - Jan P Delling
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | - Christian Jacob
- Institute for Anatomy and Cell Biology, Ulm University Ulm, Germany
| | | | | | | | - Moritz Klingenstein
- Institute of Neuroanatomy, Eberhard Karls University of Tübingen Tübingen, Germany
| | - Gotthold Barbi
- Institute for Human Genetics, Ulm University Ulm, Germany
| | - Günter Speit
- Institute for Human Genetics, Ulm University Ulm, Germany
| | | | | | - Andreas Hermann
- Department of Neurology, Technische Universität DresdenDresden, Germany; German Center for Neurodegenerative DiseasesDresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University of Tübingen Tübingen, Germany
| | | | | |
Collapse
|
23
|
Noto YI, Shibuya K, Vucic S, Kiernan MC. Novel therapies in development that inhibit motor neuron hyperexcitability in amyotrophic lateral sclerosis. Expert Rev Neurother 2016; 16:1147-54. [DOI: 10.1080/14737175.2016.1197774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Bohl D. [Neuronal cells derived from induced pluripotent stem cells to model motoneuron diseases]. Biol Aujourdhui 2016; 210:27-36. [PMID: 27286578 DOI: 10.1051/jbio/2016004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 11/15/2022]
Abstract
Among motor neuron diseases, spinal muscular atrophy type 1 and amyotrophic lateral sclerosis are very aggressive diseases with no cure. With the breakthrough of human induced pluripotent stem cells, iPS, researchers have now at their disposal a powerful tool to generate human motor neurons in culture and study the pathological defects in patient cells. In this review, we will see which tools for the study of patients motoneurons were developed from iPS cells and the different cellular models that were generated. We will also see how these models were validated and current research to identify new therapeutic leads.
Collapse
|
25
|
Ichiyanagi N, Fujimori K, Yano M, Ishihara-Fujisaki C, Sone T, Akiyama T, Okada Y, Akamatsu W, Matsumoto T, Ishikawa M, Nishimoto Y, Ishihara Y, Sakuma T, Yamamoto T, Tsuiji H, Suzuki N, Warita H, Aoki M, Okano H. Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells. Stem Cell Reports 2016; 6:496-510. [PMID: 26997647 PMCID: PMC4834049 DOI: 10.1016/j.stemcr.2016.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disorder. Although its neuropathology is well understood, the cellular and molecular mechanisms are yet to be elucidated due to limitations in the currently available human genetic data. In this study, we generated induced pluripotent stem cells (iPSC) from two familial ALS (FALS) patients with a missense mutation in the fused-in sarcoma (FUS) gene carrying the heterozygous FUS H517D mutation, and isogenic iPSCs with the homozygous FUS H517D mutation by genome editing technology. These cell-derived motor neurons mimicked several neurodegenerative phenotypes including mis-localization of FUS into cytosolic and stress granules under stress conditions, and cellular vulnerability. Moreover, exon array analysis using motor neuron precursor cells (MPCs) combined with CLIP-seq datasets revealed aberrant gene expression and/or splicing pattern in FALS MPCs. These results suggest that iPSC-derived motor neurons are a useful tool for analyzing the pathogenesis of human motor neuron disorders.
Collapse
Affiliation(s)
- Naoki Ichiyanagi
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koki Fujimori
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata 951-8510, Japan.
| | - Chikako Ishihara-Fujisaki
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yohei Okada
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi 480-1195, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduated School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takuya Matsumoto
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshinori Nishimoto
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasuharu Ishihara
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
26
|
The Use of Stem Cells to Model Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: From Basic Research to Regenerative Medicine. Stem Cells Int 2016; 2016:9279516. [PMID: 26966440 PMCID: PMC4761393 DOI: 10.1155/2016/9279516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
In recent years several genes have linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as a spectrum disease; however little is known about what triggers their onset. With the ability to generate patient specific stem cell lines from somatic cells, it is possible to model disease without the need to transfect cells with exogenous DNA. These pluripotent stem cells have opened new avenues for identification of disease phenotypes and their relation to specific molecular pathways. Thus, as never before, compounds with potential applications for regenerative medicine can be specifically tailored in patient derived cultures. In this review, we discuss how patient specific induced pluripotent stem cells (iPSCs) have been used to model ALS and FTD and the most recent drug screening targets for these diseases. We also discuss how an iPSC bank would improve the quality of the available cell lines and how it would increase knowledge about the ALS/FTD disease spectrum.
Collapse
|
27
|
Tsubota A, Ichijo H, Homma K. Mislocalization, aggregation formation and defect in proteolysis in ALS. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.2.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|