1
|
Shwab EK, Gingerich DC, Man Z, Gamache J, Garrett ME, Crawford GE, Ashley-Koch AE, Serrano GE, Beach TG, Lutz MW, Chiba-Falek O. Single-nucleus multi-omics of Parkinson's disease reveals a glutamatergic neuronal subtype susceptible to gene dysregulation via alteration of transcriptional networks. Acta Neuropathol Commun 2024; 12:111. [PMID: 38956662 PMCID: PMC11218415 DOI: 10.1186/s40478-024-01803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The genetic architecture of Parkinson's disease (PD) is complex and multiple brain cell subtypes are involved in the neuropathological progression of the disease. Here we aimed to advance our understanding of PD genetic complexity at a cell subtype precision level. Using parallel single-nucleus (sn)RNA-seq and snATAC-seq analyses we simultaneously profiled the transcriptomic and chromatin accessibility landscapes in temporal cortex tissues from 12 PD compared to 12 control subjects at a granular single cell resolution. An integrative bioinformatic pipeline was developed and applied for the analyses of these snMulti-omics datasets. The results identified a subpopulation of cortical glutamatergic excitatory neurons with remarkably altered gene expression in PD, including differentially-expressed genes within PD risk loci identified in genome-wide association studies (GWAS). This was the only neuronal subtype showing significant and robust overexpression of SNCA. Further characterization of this neuronal-subpopulation showed upregulation of specific pathways related to axon guidance, neurite outgrowth and post-synaptic structure, and downregulated pathways involved in presynaptic organization and calcium response. Additionally, we characterized the roles of three molecular mechanisms in governing PD-associated cell subtype-specific dysregulation of gene expression: (1) changes in cis-regulatory element accessibility to transcriptional machinery; (2) changes in the abundance of master transcriptional regulators, including YY1, SP3, and KLF16; (3) candidate regulatory variants in high linkage disequilibrium with PD-GWAS genomic variants impacting transcription factor binding affinities. To our knowledge, this study is the first and the most comprehensive interrogation of the multi-omics landscape of PD at a cell-subtype resolution. Our findings provide new insights into a precise glutamatergic neuronal cell subtype, causal genes, and non-coding regulatory variants underlying the neuropathological progression of PD, paving the way for the development of cell- and gene-targeted therapeutics to halt disease progression as well as genetic biomarkers for early preclinical diagnosis.
Collapse
Affiliation(s)
- E Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel C Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Zhaohui Man
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Michael W Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
| |
Collapse
|
2
|
Lutz MW, Chiba-Falek O. Bioinformatics pipeline to guide post-GWAS studies in Alzheimer's: A new catalogue of disease candidate short structural variants. Alzheimers Dement 2023; 19:4094-4109. [PMID: 37253165 PMCID: PMC10524333 DOI: 10.1002/alz.13168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Short structural variants (SSVs), including insertions/deletions (indels), are common in the human genome and impact disease risk. The role of SSVs in late-onset Alzheimer's disease (LOAD) has been understudied. In this study, we developed a bioinformatics pipeline of SSVs within LOAD-genome-wide association study (GWAS) regions to prioritize regulatory SSVs based on the strength of their predicted effect on transcription factor (TF) binding sites. METHODS The pipeline utilized publicly available functional genomics data sources including candidate cis-regulatory elements (cCREs) from ENCODE and single-nucleus (sn)RNA-seq data from LOAD patient samples. RESULTS We catalogued 1581 SSVs in candidate cCREs in LOAD GWAS regions that disrupted 737 TF sites. That included SSVs that disrupted the binding of RUNX3, SPI1, and SMAD3, within the APOE-TOMM40, SPI1, and MS4A6A LOAD regions. CONCLUSIONS The pipeline developed here prioritized non-coding SSVs in cCREs and characterized their putative effects on TF binding. The approach integrates multiomics datasets for validation experiments using disease models.
Collapse
Affiliation(s)
- Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Bustos BI, Billingsley K, Blauwendraat C, Gibbs JR, Gan-Or Z, Krainc D, Singleton AB, Lubbe SJ. Genome-wide contribution of common short-tandem repeats to Parkinson's disease genetic risk. Brain 2023; 146:65-74. [PMID: 36347471 DOI: 10.1093/brain/awac301] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is a complex neurodegenerative disorder with a strong genetic component, for which most known disease-associated variants are single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels). DNA repetitive elements account for >50% of the human genome; however, little is known of their contribution to Parkinson's disease aetiology. While select short tandem repeats (STRs) within candidate genes have been studied in Parkinson's disease, their genome-wide contribution remains unknown. Here we present the first genome-wide association study of STRs in Parkinson's disease. Through a meta-analysis of 16 imputed genome-wide association study cohorts from the International Parkinson's Disease Genomic Consortium (IPDGC), totalling 39 087 individuals (16 642 cases and 22 445 controls of European ancestry), we identified 34 genome-wide significant STR loci (P < 5.34 × 10-6), with the strongest signal located in KANSL1 [chr17:44 205 351:[T]11, P = 3 × 10-39, odds ratio = 1.31 (95% confidence interval = 1.26-1.36)]. Conditional-joint analyses suggested that four significant STRs mapping nearby NDUFAF2, TRIML2, MIRNA-129-1 and NCOR1 were independent from known risk SNPs. Including STRs in heritability estimates increased the variance explained by SNPs alone. Gene expression analysis of STRs (eSTRs) in RNA sequencing data from 13 brain regions identified significant associations of STRs influencing the expression of multiple genes, including known Parkinson's disease genes. Further functional annotation of candidate STRs revealed that significant eSTRs within NUDFAF2 and ZSWIM7 overlap with regulatory features and are associated with change in the expression levels of nearby genes. Here, we show that STRs at known and novel candidate loci contribute to Parkinson's disease risk and have functional effects in disease-relevant tissues and pathways, supporting previously reported disease-associated genes and giving further evidence for their functional prioritization. These data represent a valuable resource for researchers currently dissecting Parkinson's disease risk loci.
Collapse
Affiliation(s)
- Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kimberley Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, Montréal, QC, Canada.,Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
4
|
MacDougall G, Brown LY, Kantor B, Chiba-Falek O. The Path to Progress Preclinical Studies of Age-Related Neurodegenerative Diseases: A Perspective on Rodent and hiPSC-Derived Models. Mol Ther 2021; 29:949-972. [PMID: 33429080 PMCID: PMC7934639 DOI: 10.1016/j.ymthe.2021.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most prevalent age-related neurodegenerative diseases, and currently no effective clinical treatments exist for either, despite decades of clinical trials. The failure to translate preclinical findings into effective treatments is indicative of a problem in the current evaluation pipeline for potential therapeutics. At present, there are no useful animal models for AD and PD research that reflect the entire biology of the diseases, specifically, the more common non-Mendelian forms. Whereas the field continues to seek suitable rodent models for investigating potential therapeutics for these diseases, rodent models have still been used primarily for preclinical studies. Here, we advocate for a paradigm shift toward the application of human-induced pluripotent stem cell (hiPSC)-derived systems for PD and AD modeling and the development of improved human-based models in a dish for drug discovery and preclinical assessment of therapeutic targets.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Logan Y Brown
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA; Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA; Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Zhu XY, Wang HM, Wu TT, Liu T, Chen YJ, Li X, Chen TJ, Liu Y, Zhang XJ, Wang XX, Zhang Y, Ondo WG, Wu YC. SNCA-Rep1 polymorphism correlates with susceptibility and iron deficiency in restless legs syndrome. Parkinsonism Relat Disord 2020; 81:12-17. [PMID: 33035800 DOI: 10.1016/j.parkreldis.2020.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Brain iron disequilibrium and dopaminergic dysfunction are key pathophysiological features of Restless Legs Syndrome (RLS). Rep1 polymorphism in the promotor region of SNCA is associated with risk of Parkinson's disease, however its association with RLS and iron status is unclear. OBJECTIVE To investigate SNCA-Rep1 polymorphism in RLS and its phenotypes. METHODS We recruited RLS patients as well as age and gender matched healthy controls. Demographic information and clinical features of RLS were recorded. Laboratory examinations were performed to exclude possible secondary causes. RESULTS 215 RLS patients and 369 healthy controls were included. We found that the Rep1 allele 0 homozygosity significantly decreased RLS risk (OR: 0.345; P < 0.0001, and remained significant after the Bonferroni correction). Phenotypic analysis demonstrated that longer Rep1 alleles were associated with increased susceptibility to iron deficiency (53.0% vs 36.1%, P = 0.017), however had no phenotypic significant effects on age, gender, onset age, duration, RLS family history, severity, laterality, extra body involvement and seasonal fluctuation. Multivariate logistic regression analyses confirmed long Rep1 allele was associated with higher risk of iron deficiency in RLS after adjusting for potential confounding factors. In detail, Rep1 allele 2 homozygosity was prone to a higher risk of peripheral iron deficiency in RLS (OR: 4.550, P = 0.006, remained significant after the Bonferroni correction). CONCLUSION The SNCA-Rep1 variability modified RLS risk and influenced peripheral iron deficiency in this group of Chinese RLS patients. Rep1 allele 0 homozygosity decreased the risk of RLS, while homozygous allele 2 increased the risk of nonanemic iron deficiency in RLS.
Collapse
Affiliation(s)
- Xiao-Ying Zhu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Hong-Ming Wang
- Department of Clinical Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Ting-Ting Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, PR China
| | - Ya-Jing Chen
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xuan Li
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Tian-Jiao Chen
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Ye Liu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xiao-Jin Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xi-Xi Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, PR China
| | - William G Ondo
- Department of Neurology, Methodist Neurological Institute, Weill Cornell Medical School, Houston, TX, USA
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
6
|
Flickinger R. Polymorphism of simple sequence repeats may quantitatively regulate gene transcription. Exp Cell Res 2020; 390:111969. [PMID: 32199920 DOI: 10.1016/j.yexcr.2020.111969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/15/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
The degree of polymorphism, i.e., DNA sequence divergence, of short AT-rich tandemly arranged simple sequence repeats at or near promoters and 5'- untranslated regions of mRNA may quantitatively regulate transcription of tissue-specific genes. Less polymorphic repeats allow greater gene expression. Preferential binding of hypophosphorylated H1 histone to these repeats may diminish binding of transcription factors. Preferential binding of hypophosphorylated high mobility group chromatin proteins would increase this binding. Shorter simple sequence repeats have undergone fewer point mutations than longer repeats, hence they are less polymorphic and more conserved. The role of transcribed simple sequence repeats in frog embryo germ layer determination is considered.
Collapse
Affiliation(s)
- Reed Flickinger
- Department of Biological Sciences, State University of New York, Buffalo, N.Y. 14260, Mailing Address:P.O. Box 741 Captain Cook, HI, 96704, USA.
| |
Collapse
|
7
|
Sharma A, Osato N, Liu H, Asthana S, Dakal TC, Ambrosini G, Bucher P, Schmitt I, Wüllner U. Common genetic variants associated with Parkinson's disease display widespread signature of epigenetic plasticity. Sci Rep 2019; 9:18464. [PMID: 31804560 PMCID: PMC6895091 DOI: 10.1038/s41598-019-54865-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson disease (PD) is characterized by a pivotal progressive loss of substantia nigra dopaminergic neurons and aggregation of α-synuclein protein encoded by the SNCA gene. Genome-wide association studies identified almost 100 sequence variants linked to PD in SNCA. However, the consequences of this genetic variability are rather unclear. Herein, our analysis on selective single nucleotide polymorphisms (SNPs) which are highly associated with the PD susceptibility revealed that several SNP sites attribute to the nucleosomes and overlay with bivalent regions poised to adopt either active or repressed chromatin states. We also identified large number of transcription factor (TF) binding sites associated with these variants. In addition, we located two docking sites in the intron-1 methylation prone region of SNCA which are required for the putative interactions with DNMT1. Taken together, our analysis reflects an additional layer of epigenomic contribution for the regulation of the SNCA gene in PD.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Neurology, University Clinic Bonn, Bonn, Germany.,Department of Ophthalmology, University Clinic Bonn, Bonn, Germany
| | - Naoki Osato
- Department of Bioinformatics Engineering, Osaka University, Osaka, Japan
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Shailendra Asthana
- Drug Discovery Research Centre (DDRC), Translational Health Science and Technology Institute (THSTI), Haryana, 121001, India
| | - Tikam Chand Dakal
- Genome & Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | | | - Philipp Bucher
- EPFL and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ina Schmitt
- Department of Neurology, University Clinic Bonn, Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Clinic Bonn, Bonn, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|