1
|
Witzel MGW, Gebhard C, Wenzel S, Kleier S, Eichhorn B, Lorenz P, von der Heyden L, Kuhn M, Luedeke M, Döcker M, Jüngling J, Schulte B, Hörtnagel K, Glaubitz R, Knippenberger S, Teubert A, Abicht A, Neuhann TM. Prospective evaluation of NGS-based sequencing in epilepsy patients: results of seven NASGE-associated diagnostic laboratories. Front Neurol 2023; 14:1276238. [PMID: 38125836 PMCID: PMC10731269 DOI: 10.3389/fneur.2023.1276238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Background Epilepsy is one of the most common and disabling neurological disorders. It is highly prevalent in children with neurodevelopmental delay and syndromic diseases. However, epilepsy can also be the only disease-determining symptom. The exact molecular diagnosis is essential to determine prognosis, comorbidity, and probability of recurrence, and to inform therapeutic decisions. Methods and materials Here, we describe a prospective cohort study of patients with epilepsy evaluated in seven diagnostic outpatient centers in Germany. Over a period of 2 months, 07/2022 through 08/2022, 304 patients (317 returned result) with seizure-related human phenotype ontology (HPO) were analyzed. Evaluated data included molecular results, phenotype (syndromic and non-syndromic), and sequencing methods. Results Single exome sequencing (SE) was applied in half of all patients, followed by panel (P) testing (36%) and trio exome sequencing (TE) (14%). Overall, a pathogenic variant (PV) (ACMG cl. 4/5) was identified in 22%; furthermore, a significant number of patients (12%) carried a reported clinically meaningful variant of unknown significance (VUS). The average diagnostic yield in patients ≤ 12 y was higher compared to patients >12 y cf. Figure 2B vs. Figure 3B. This effect was more pronounced in cases, where TE was applied in patients ≤ 12 vs. >12 y [PV (PV + VUS): patients ≤ 12 y: 35% (47%), patients > 12 y: 20% (40%)]. The highest diagnostic yield was achieved by TE in syndromic patients within the age group ≤ 12 y (ACMG classes 4/5 40%). In addition, TE vs. SE had a tendency to result in less VUS in patients ≤ 12 y [SE: 19% (22/117) VUS; TE: 17% (6/36) VUS] but not in patients >12 y [SE: 19% (8/42) VUS; TE: 20% (2/10) VUS]. Finally, diagnostic findings in patients with syndromic vs. non-syndromic symptoms revealed a significant overlap of frequent causes of monogenic epilepsies, including SCN1A, CACNA1A, and SETD1B, confirming the heterogeneity of the associated conditions. Conclusion In patients with seizures-regardless of the detailed phenotype-a monogenic cause can be frequently identified, often implying a possible change in therapeutic action (36.7% (37/109) of PV/VUS variants); this justifies early and broad application of genetic testing. Our data suggest that the diagnostic yield is highest in exome or trio-exome-based testing, resulting in a molecular diagnosis within 3 weeks, with profound implications for therapeutic strategies and for counseling families and patients regarding prognosis and recurrence risk.
Collapse
Affiliation(s)
| | | | - Sören Wenzel
- Gemeinschaftspraxis für Humangenetik and Genetische Labore Hamburg, Hamburg, Germany
| | - Saskia Kleier
- Gemeinschaftspraxis für Humangenetik and Genetische Labore Hamburg, Hamburg, Germany
| | - Birgit Eichhorn
- MVZ Mitteldeutscher Praxisverbund Humangenetik GmbH, Dresden, Germany
| | - Peter Lorenz
- MVZ Mitteldeutscher Praxisverbund Humangenetik GmbH, Dresden, Germany
| | | | | | | | | | | | | | - Konstanze Hörtnagel
- Zentrum für Humangenetik und Laboratoriumsdiagnostik (MVZ), Martinsried, Germany
| | | | | | | | - Angela Abicht
- MGZ Medizinisch Genetisches Zentrum, München, Germany
| | | |
Collapse
|
2
|
Kovačević M, Milićević O, Branković M, Janković M, Novaković I, Sokić D, Ristić A, Shamsani J, Vojvodić N. Novel variants in established epilepsy genes in focal epilepsy. Seizure 2023; 110:146-152. [PMID: 37390664 DOI: 10.1016/j.seizure.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023] Open
Abstract
INTRODUCTION Next generation sequencing (NGS) has greatly expanded our understanding of genetic contributors in multiple epilepsy syndromes, including focal epilepsy. Describing the genetic architecture of common syndromes promises to facilitate the diagnostic process as well as aid in the identification of patients who stand to benefit from genetic testing, but most studies to date have been limited to examining children or adults with intellectual disability. Our aim was to determine the yield of targeted sequencing of 5 established epilepsy genes (DEPDC5, LGI1, SCN1A, GRIN2A, and PCHD19) in an extensively phenotyped cohort of focal epilepsy patients with normal intellectual function or mild intellectual disability, as well as describe novel variants and determine the characteristics of variant carriers. PATIENTS AND METHODS Targeted panel sequencing was performed on 96 patients with a strong clinical suspicion of genetic focal epilepsy. Patients had previously gone through a comprehensive diagnostic epilepsy evaluation in The Neurology Clinic, University Clinical Center of Serbia. Variants of interest (VOI) were classified using the American College of Medical Genetics and the Association for Molecular Pathology criteria. RESULTS Six VOI in eight (8/96, 8.3%) patients were found in our cohort. Four likely pathogenic VOI were determined in six (6/96, 6.2%) patients, two DEPDC5 variants in two patients, one SCN1A variant in two patients and one PCDH19 variant in two patients. One variant of unknown significance (VUS) was found in GRIN2A in one (1/96, 1.0%) patient. Only one VOI in GRIN2A was classified as likely benign. No VOI were detected in LGI1. CONCLUSION Sequencing of only five known epilepsy genes yielded a diagnostic result in 6.2% of our cohort and revealed multiple novel variants. Further research is necessary for a better understanding of the genetic basis in common epilepsy syndromes in patients with normal intellectual function or mild intellectual disability.
Collapse
Affiliation(s)
- Maša Kovačević
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | | | | | - Milena Janković
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivana Novaković
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragoslav Sokić
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ristić
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Nikola Vojvodić
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Genome-Wide Sequencing Modalities for Children with Unexplained Global Developmental Delay and Intellectual Disabilities—A Narrative Review. CHILDREN 2023; 10:children10030501. [PMID: 36980059 PMCID: PMC10047410 DOI: 10.3390/children10030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Unexplained global developmental delay (GDD) and intellectual disabilities (ID) together affect nearly 2% of the pediatric population. Establishing an etiologic diagnosis is crucial for disease management, prognostic evaluation, and provision of physical and psychological support for both the patient and the family. Advancements in genome sequencing have allowed rapid accumulation of gene–disorder associations and have accelerated the search for an etiologic diagnosis for unexplained GDD/ID. We reviewed recent studies that utilized genome-wide analysis technologies, and we discussed their diagnostic yield, strengths, and limitations. Overall, exome sequencing (ES) and genome sequencing (GS) outperformed chromosomal microarrays and targeted panel sequencing. GS provides coverage for both ES and chromosomal microarray regions, providing the maximal diagnostic potential, and the cost of ES and reanalysis of ES-negative results is currently still lower than that of GS alone. Therefore, singleton or trio ES is the more cost-effective option for the initial investigation of individuals with GDD/ID in clinical practice compared to a staged approach or GS alone. Based on these updated evidence, we proposed an evaluation algorithm with ES as the first-tier evaluation for unexplained GDD/ID.
Collapse
|
4
|
Concise Review: Stem Cell Models of SCN1A-Related Encephalopathies—Current Perspective and Future Therapies. Cells 2022; 11:cells11193119. [PMID: 36231081 PMCID: PMC9561991 DOI: 10.3390/cells11193119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the SCN1A gene can cause a variety of phenotypes, ranging from mild forms, such as febrile seizures and generalized epilepsy with febrile seizures plus, to severe, such as Dravet and non-Dravet developmental epileptic encephalopathies. Until now, more than two thousand pathogenic variants of the SCN1A gene have been identified and different pathogenic mechanisms (loss vs. gain of function) described, but the precise molecular mechanisms responsible for the deficits exhibited by patients are not fully elucidated. Additionally, the phenotypic variability proves the involvement of other genetic factors in its final expression. This is the reason why animal models and cell line models used to explore the molecular pathology of SCN1A-related disorders are only of limited use. The results of studies based on such models cannot be directly translated to affected individuals because they do not address each patient’s unique genetic background. The generation of functional neurons and glia for patient-derived iPSCs, together with the generation of isogenic controls using CRISPR/Cas technology, and finally, the 3D brain organoid models, seem to be a good way to solve this problem. Here, we review SCN1A-related encephalopathies, as well as the stem cell models used to explore their molecular basis.
Collapse
|
5
|
Stark Z, Foulger RE, Williams E, Thompson BA, Patel C, Lunke S, Snow C, Leong IUS, Puzriakova A, Daugherty LC, Leigh S, Boustred C, Niblock O, Rueda-Martin A, Gerasimenko O, Savage K, Bellamy W, Lin VSK, Valls R, Gordon L, Brittain HK, Thomas ERA, Taylor Tavares AL, McEntagart M, White SM, Tan TY, Yeung A, Downie L, Macciocca I, Savva E, Lee C, Roesley A, De Fazio P, Deller J, Deans ZC, Hill SL, Caulfield MJ, North KN, Scott RH, Rendon A, Hofmann O, McDonagh EM. Scaling national and international improvement in virtual gene panel curation via a collaborative approach to discordance resolution. Am J Hum Genet 2021; 108:1551-1557. [PMID: 34329581 PMCID: PMC8456155 DOI: 10.1016/j.ajhg.2021.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/27/2021] [Indexed: 02/02/2023] Open
Abstract
Clinical validity assessments of gene-disease associations underpin analysis and reporting in diagnostic genomics, and yet wide variability exists in practice, particularly in use of these assessments for virtual gene panel design and maintenance. Harmonization efforts are hampered by the lack of agreed terminology, agreed gene curation standards, and platforms that can be used to identify and resolve discrepancies at scale. We undertook a systematic comparison of the content of 80 virtual gene panels used in two healthcare systems by multiple diagnostic providers in the United Kingdom and Australia. The process was enabled by a shared curation platform, PanelApp, and resulted in the identification and review of 2,144 discordant gene ratings, demonstrating the utility of sharing structured gene-disease validity assessments and collaborative discordance resolution in establishing national and international consensus.
Collapse
Affiliation(s)
- Zornitza Stark
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Rebecca E Foulger
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Eleanor Williams
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Bryony A Thompson
- University of Melbourne, Melbourne, VIC 3010, Australia; Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; University of Melbourne, Melbourne, VIC 3010, Australia
| | - Catherine Snow
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ivone U S Leong
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Arina Puzriakova
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Louise C Daugherty
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sarah Leigh
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Christopher Boustred
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Olivia Niblock
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Antonio Rueda-Martin
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Oleg Gerasimenko
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Kevin Savage
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - William Bellamy
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Victor San Kho Lin
- Centre for Cancer Research, University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Roman Valls
- Centre for Cancer Research, University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lavinia Gordon
- Centre for Cancer Research, University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Helen K Brittain
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ellen R A Thomas
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Guy's and St Thomas's NHS Trust, London SE1 9RS, UK
| | | | - Meriel McEntagart
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; St George's University Hospitals NHS Trust, London SW17 0QT, UK
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; University of Melbourne, Melbourne, VIC 3010, Australia
| | - Tiong Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lilian Downie
- University of Melbourne, Melbourne, VIC 3010, Australia; Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Ivan Macciocca
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Elena Savva
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Crystle Lee
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Ain Roesley
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Paul De Fazio
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Jane Deller
- National Health Service England and National Health Service Improvement, London SE1 6LH, UK
| | - Zandra C Deans
- National Health Service England and National Health Service Improvement, London SE1 6LH, UK
| | - Sue L Hill
- National Health Service England and National Health Service Improvement, London SE1 6LH, UK
| | - Mark J Caulfield
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Kathryn N North
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia; University of Melbourne, Melbourne, VIC 3010, Australia; Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Richard H Scott
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Augusto Rendon
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Oliver Hofmann
- Centre for Cancer Research, University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ellen M McDonagh
- Genomics England, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Open Targets and European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| |
Collapse
|
6
|
Varesio C, Gana S, Asaro A, Ballante E, Cabini RF, Tartara E, Bagnaschi M, Pasca L, Valente M, Orcesi S, Cereda C, Veggiotti P, Borgatti R, Valente EM, De Giorgis V. Diagnostic Yield and Cost-Effectiveness of "Dynamic" Exome Analysis in Epilepsy with Neurodevelopmental Disorders: A Tertiary-Center Experience in Northern Italy. Diagnostics (Basel) 2021; 11:diagnostics11060948. [PMID: 34070668 PMCID: PMC8228291 DOI: 10.3390/diagnostics11060948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023] Open
Abstract
Background: The advent of next-generation sequencing (NGS) techniques in clinical practice led to a significant advance in gene discovery. We aimed to describe diagnostic yields of a “dynamic” exome-based approach in a cohort of patients with epilepsy associated with neurodevelopmental disorders. Methods: We conducted a retrospective, observational study on 72 probands. All patients underwent a first diagnostic level of a 135 gene panel, a second of 297 genes for inconclusive cases, and finally, a whole-exome sequencing for negative cases. Diagnostic yields at each step and cost-effectiveness were the objects of statistical analysis. Results: Overall diagnostic yield in our cohort was 37.5%: 29% of diagnoses derived from the first step analysis, 5.5% from the second step, and 3% from the third. A significant difference emerged between the three diagnostic steps (p < 0.01), between the first and second (p = 0.001), and the first and third (p << 0.001). The cost-effectiveness plane indicated that our exome-based “dynamic” approach was better in terms of cost savings and higher diagnostic rate. Conclusions: Our findings suggested that “dynamic” NGS techniques applied to well-phenotyped individuals can save both time and resources. In patients with unexplained epilepsy comorbid with NDDs, our approach might maximize the number of diagnoses achieved.
Collapse
Affiliation(s)
- Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.P.); (S.O.); (R.B.); (V.D.G.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-380289
| | - Simone Gana
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (S.G.); (A.A.); (M.V.); (E.M.V.)
| | - Alessia Asaro
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (S.G.); (A.A.); (M.V.); (E.M.V.)
| | - Elena Ballante
- BioData Science Center, IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Department of Mathematics, University of Pavia, 27100 Pavia, Italy;
| | - Raffaella Fiamma Cabini
- Department of Mathematics, University of Pavia, 27100 Pavia, Italy;
- Istituto Nazionale di Fisica Nucleare Section of Pavia, 27100 Pavia, Italy
| | - Elena Tartara
- Epilepsy Center, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Michela Bagnaschi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.P.); (S.O.); (R.B.); (V.D.G.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Marialuisa Valente
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (S.G.); (A.A.); (M.V.); (E.M.V.)
- Laboratory of Clinical Pathology Microbiology and Genetics, SS. Annunziata, 74100 Taranto, Italy
| | - Simona Orcesi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.P.); (S.O.); (R.B.); (V.D.G.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Cristina Cereda
- Molecular Genetics and Cytogenetics Section, IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Vittore Buzzi Hospital, 20100 Milano, Italy;
- Biomedical and Clinical Sciences Department, Luigi Sacco Hospital, University of Milan, 20100 Milano, Italy
| | - Renato Borgatti
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.P.); (S.O.); (R.B.); (V.D.G.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Enza Maria Valente
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (S.G.); (A.A.); (M.V.); (E.M.V.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (L.P.); (S.O.); (R.B.); (V.D.G.)
| |
Collapse
|
7
|
Garcia-Rosa S, de Freitas Brenha B, Felipe da Rocha V, Goulart E, Araujo BHS. Personalized Medicine Using Cutting Edge Technologies for Genetic Epilepsies. Curr Neuropharmacol 2021; 19:813-831. [PMID: 32933463 PMCID: PMC8686309 DOI: 10.2174/1570159x18666200915151909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is the most common chronic neurologic disorder in the world, affecting 1-2% of the population. Besides, 30% of epilepsy patients are drug-resistant. Genomic mutations seem to play a key role in its etiology and knowledge of strong effect mutations in protein structures might improve prediction and the development of efficacious drugs to treat epilepsy. Several genetic association studies have been undertaken to examine the effect of a range of candidate genes for resistance. Although, few studies have explored the effect of the mutations into protein structure and biophysics in the epilepsy field. Much work remains to be done, but the plans made for exciting developments will hold therapeutic potential for patients with drug-resistance. In summary, we provide a critical review of the perspectives for the development of individualized medicine for epilepsy based on genetic polymorphisms/mutations in light of core elements such as transcriptomics, structural biology, disease model, pharmacogenomics and pharmacokinetics in a manner to improve the success of trial designs of antiepileptic drugs.
Collapse
Affiliation(s)
- Sheila Garcia-Rosa
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Bianca de Freitas Brenha
- Laboratory of Embryonic Genetic Regulation, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Vinicius Felipe da Rocha
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center (HUG-CEL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| |
Collapse
|
8
|
Minardi R, Licchetta L, Baroni MC, Pippucci T, Stipa C, Mostacci B, Severi G, Toni F, Bergonzini L, Carelli V, Seri M, Tinuper P, Bisulli F. Whole-exome sequencing in adult patients with developmental and epileptic encephalopathy: It is never too late. Clin Genet 2020; 98:477-485. [PMID: 32725632 DOI: 10.1111/cge.13823] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) encompass rare, sporadic neurodevelopmental disorders and usually with pediatric onset. As these conditions are characterized by marked clinical and genetic heterogeneity, whole-exome sequencing (WES) represents the strategy of choice for the molecular diagnosis. While its usefulness is well established in pediatric DEE cohorts, our study is aimed at assessing the WES feasibility in adult DEE patients who experienced a diagnostic odyssey prior to the advent of this technique. We analyzed exomes from 71 unrelated adult DEE patients, consecutively recruited from an Italian cohort for the EPI25 Project. All patients underwent accurate clinical and electrophysiological characterization. An overwhelming percentage (90.1%) had already undergone negative genetic testing. Variants were classified according to the American College of Medical Genetics and Genomics guidelines. WES disclosed 24 (likely) pathogenic variants among 18 patients in epilepsy-related genes with either autosomal dominant, recessive or X-linked inheritance. Ten of these were novel. We obtained a diagnostic yield of 25.3%, higher among patients with brain malformations, early-onset epilepsy and dysmorphisms. Despite a median diagnostic delay of 38.7 years, WES analysis provided the long-awaited diagnosis for 18 adult patients, which also had an impact on the clinical management of 50% of them.
Collapse
Affiliation(s)
- Raffaella Minardi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (Reference Center for Rare and Complex Epilepsies-EpiCARE), Bologna, Italy
| | - Laura Licchetta
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (Reference Center for Rare and Complex Epilepsies-EpiCARE), Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Chiara Baroni
- Department of Biomedical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Tommaso Pippucci
- Azienda Ospedaliero-Universitaria di Bologna Policlinico Sant'Orsola-Malpighi, UO Genetica Medica, Bologna, Italy
| | - Carlotta Stipa
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (Reference Center for Rare and Complex Epilepsies-EpiCARE), Bologna, Italy
| | - Barbara Mostacci
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (Reference Center for Rare and Complex Epilepsies-EpiCARE), Bologna, Italy
| | - Giulia Severi
- Azienda Ospedaliero-Universitaria di Bologna Policlinico Sant'Orsola-Malpighi, UO Genetica Medica, Bologna, Italy
| | - Francesco Toni
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (Reference Center for Rare and Complex Epilepsies-EpiCARE), Bologna, Italy
| | - Luca Bergonzini
- Department of Biomedical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (Reference Center for Rare and Complex Epilepsies-EpiCARE), Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Seri
- Azienda Ospedaliero-Universitaria di Bologna Policlinico Sant'Orsola-Malpighi, UO Genetica Medica, Bologna, Italy
| | - Paolo Tinuper
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (Reference Center for Rare and Complex Epilepsies-EpiCARE), Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bisulli
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (Reference Center for Rare and Complex Epilepsies-EpiCARE), Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Amadori E, Scala M, Cereda GS, Vari MS, Marchese F, Di Pisa V, Mancardi MM, Giacomini T, Siri L, Vercellino F, Serino D, Orsini A, Bonuccelli A, Bagnasco I, Papa A, Minetti C, Cordelli DM, Striano P. Targeted re-sequencing for early diagnosis of genetic causes of childhood epilepsy: the Italian experience from the 'beyond epilepsy' project. Ital J Pediatr 2020; 46:92. [PMID: 32631363 PMCID: PMC7339579 DOI: 10.1186/s13052-020-00860-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/01/2020] [Indexed: 01/12/2023] Open
Abstract
Background Childhood epilepsies are a heterogeneous group of conditions differing in diagnostic criteria, management, and outcome. Late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) is a neurodegenerative condition caused by biallelic TPP1 variants. This disorder presents with subtle and relatively non-specific symptoms, mimicking those observed in more common paediatric epilepsies and followed by rapid psychomotor deterioration and drug-resistant epilepsy. A prompt diagnosis is essential to adopt appropriate treatment and disease management strategies. Methods This is a prospective, multicentre study on the efficiency of targeted re-sequencing in the early identification of the genetic causes of childhood epilepsy, with particular regard to CLN2. After phenotypic characterization, a 283-gene Next Generation Sequencing panel was performed in 21 Italian children with neurodevelopmental abnormalities, aged between 24 and 60 months, experiencing first unprovoked seizure after 2 years of age. Results The average age at enrolment was 39.9 months, with a mean age at seizure onset of 30.9 months and a mean time interval between seizure onset and targeted resequencing of 9 months. Genetic confirmation was achieved in 4 out of 21 patients, with a diagnostic yield of 19%. In one case, the homozygous splice acceptor variant c.509-1G > C in TPP1 was identified, leading to a CLN2 diagnosis. Three pathogenic variants in MECP2 were also detected in three patients, including the frameshift variant c.1157_1186delinsA (p.Leu386Hisfs*9) in a girl with negative single gene sequencing. Variants of unknown significance (VUS) were found in 11 out of 21 (52.4%) individuals, whereas no clinically significant variants were observed in the remaining 6 subjects. Conclusions Our findings support the efficacy of target re-sequencing in the identification of the genetic causes of childhood epilepsy and suggest that this technique might prove successful in the early detection of CLN2 as well as other neurodevelopmental conditions.
Collapse
Affiliation(s)
- Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, 16147, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Marcello Scala
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, 16147, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Giulia Sofia Cereda
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, 16147, Genoa, Italy
| | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, 16147, Genoa, Italy
| | - Francesca Marchese
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, 16147, Genoa, Italy
| | - Veronica Di Pisa
- Child Neurology and Psychiatry Unit, Department of Medical and Surgical Sciences (DIMEC), S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Maria Margherita Mancardi
- Child Neuropsychiatry Unit, Epilepsy Centre, Department of Clinical and Surgical Neurosciences and Rehabilitation, IRCSS 'G. Gaslini' Institute, Genoa, Italy
| | - Thea Giacomini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, Epilepsy Centre, Department of Clinical and Surgical Neurosciences and Rehabilitation, IRCSS 'G. Gaslini' Institute, Genoa, Italy
| | - Laura Siri
- Child Neuropsychiatry Unit, IRCSS 'G. Gaslini' Institute, Genoa, Italy
| | - Fabiana Vercellino
- Department of Child Neurology and Psychiatry, Cesare Arrigo Hospital, Alessandria, Italy
| | - Domenico Serino
- Department of Paediatric Neurology, Royal Aberdeen Children's Hospital, Aberdeen, UK.,Child Neurology and Psychiatry Unit, ASL CN1, Cuneo, Italy
| | - Alessandro Orsini
- Pediatric Neurology, Pediatric Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Alice Bonuccelli
- Pediatric Neurology, Pediatric Department, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Irene Bagnasco
- Division of Child Neuropsychiatry, Martini Hospital, via Tofane 71, 10141, Torino, Italy
| | - Amanda Papa
- Department of Child Neuropsychiatry, AOU Maggiore della Carita, Novara, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, 16147, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Duccio Maria Cordelli
- Child Neurology and Psychiatry Unit, Department of Medical and Surgical Sciences (DIMEC), S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, 16147, Genoa, Italy. .,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| |
Collapse
|