1
|
Yu X, Li M, Wang C, Guan X. Glycoprotein non-metastatic melanoma protein B (GPNMB): An attractive target in atherosclerosis. Biochem Biophys Res Commun 2024; 732:150386. [PMID: 39024681 DOI: 10.1016/j.bbrc.2024.150386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Atherosclerosis (AS), the leading cause of cardiovascular diseases, is heavily influenced by inflammation, lipid accumulation, autophagy, and aging. The expression of glycoprotein non-metastatic melanoma B (GPNMB) has been observed to correlate with lipid content, inflammation, and aging, progressively increasing as atherosclerosis advances through its various stages, from baseline to early and advanced phases. However, the interaction between GPNMB and AS is controversial. Knockout of GPNMB has been shown to increase atherosclerotic plaque burden in mice. Conversely, targeted elimination of GPNMB-positive cells reduced atherosclerotic burden. These seemingly contradictory findings underscore the complexity of the issue and highlight the need for further research to reconcile these discrepancies and to elucidate the precise role of GPNMB in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochen Yu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Min Li
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Chao Wang
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
2
|
Yang M, Zhao Y, Li X, Li H, Cheng F, Liu Y, Jia Z, He Y, Lin J, Guan L. Conditioned medium of human menstrual blood-derived endometrial stem cells protects against cell inflammation and apoptosis of Npc1 KO N2a cells. Metab Brain Dis 2023; 38:2301-2313. [PMID: 37261632 DOI: 10.1007/s11011-023-01243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Niemann-Pick disease type C1 (NPC1) is a hereditary neurodegenerative disorder caused by a mutation in the NPC1 gene. This gene encodes a transmembrane protein found in lysosomes. This disease characterized by hepatosplenomegaly, neurological impairments and premature death. Recent preclinical studies have shown promising results in using mesenchymal stem cells (MSCs) to alleviate the symptoms of NPC1. One type of MSCs, known as human menstrual blood-derived endometrial stem cells (MenSCs), has attracted attention due to its accessibility, abundant supply, and strong proliferation and regeneration capabilities. However, it remains uncertain whether the conditioned medium of MenSCs (MenSCs-CM) can effectively relieve the symptoms of NPC1. To investigate this further, we employed the CRISPR-Cas9 technique to successfully create a Npc1 gene knockout N2a cell line (Npc1KO N2a). Sanger sequencing confirmed the occurrence of Npc1 gene mutation in these cells, while western blotting revealed a lack of NPC1 protein expression. Filipin staining provided visual evidence of unesterified cholesterol accumulation in Npc1KO N2a cells. Moreover, Npc1KO N2a cells exhibited significantly decreased viability, increased inflammation, and heightened cell apoptosis. Notably, our study demonstrated that the viability of Npc1KO N2a cells was most significantly improved after being cultured by 36 h-collected MenSCs-CM for 0.5 days. Additionally, MenSCs-CM exhibited the ability to effectively reduce inflammation, counteract cell apoptosis, and ameliorate unesterified cholesterol accumulation in Npc1KO N2a cells. This groundbreaking finding establishes, for the first time, the protective effect of MenSCs-CM on N2a cells with Npc1 gene deletion. These findings suggest that the potential of MenSCs-CM as a beneficial therapeutic approach for NPC1 and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yanchun Zhao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Han Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Fangfang Cheng
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yanli Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Ya'nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang, Henan, 453003, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
3
|
Luo M, Feng G, Chen M, Ke H. Probiotics and Immunostimulant modulate intestinal flora diversity in Reeves pond tortoise (Mauremys reevesii) and effects of Clostridium butyricum on its spleen transcriptome. FISH & SHELLFISH IMMUNOLOGY 2023:108908. [PMID: 37380116 DOI: 10.1016/j.fsi.2023.108908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
In this study, we investigated the effects of Clostridium butyricum (group A), Bacillus subtilis (group B), and the immune enhancer algal β-1,3 glucan (group C) on the intestinal flora of Mauremys reevesii and the effects of C. butyricum on the transcriptome of M. reevesii splenic immune tissues. M. reevesii were assigened to four groups, each containing three replicates from 18 samples. Juvenile turtles with an initial weight of 106.35 ± 0.03 g were fed a basic diet containing no probiotics (control group D), or a basic diet containing the A, B, or C supplement. After the turtles had been fed for 60, 90, and 120 d of the experimental period, high-throughput sequencing of the 16S rRNA gene revealed no significant difference in alpha diversity among the four groups at 60 days of feeding (P > 0.05), and at 90 days, the alpha diversity in group A was significantly different (P < 0.05), with an increase of 26.62% in the Shannon index and a decrease of 83.33% in the Simpson index; at 120 d, the alpha diversity (Shannon index)showed a decreasing trend in order for groups A, B, and C, At the phylum level, the abundance of Bacteroidetes, Proteobacteria, and Fusobacteria in group A increased significantly with increasing feeding time (P < 0.05),At the genus level, the abundance of Ruminococcaceae and Anaerotruncus in group A increased significantly compared with that in the other three groups (P < 0.05). Transcriptome analysis showed that 384 genes were differentially expressed in the spleen of M. reevesii, 195 genes were upregulated and 189 genes were downregulated, and C. butyricum TF201120 regulated the hematopoietic cell lineage signaling pathway in the spleen of M. reevesii (P < 0.05). The regulation of several identified immune-related genes was confirmed by qPCR, These results showed that C. butyricum, B. subtilis and the immune enhancer algal β-1,3 glucan can improve the intestinal flora of M. reevesii, with C. butyricum TF20 being the most effective and significantly enhancing the immunity of M. reevesii.
Collapse
Affiliation(s)
- Meng Luo
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; College of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoqing Feng
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Mingjie Chen
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; College of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Ke
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China; Key Laboratory of Animal and Poultry Disease Control Research, Guangdong Province, Guangzhou, 510000, China.
| |
Collapse
|
4
|
Freedman AN, Clark J, Eaves LA, Roell K, Oran A, Koval L, Rager J, Santos HP, Kuban K, Joseph RM, Frazier J, Marsit CJ, Burt AA, O’Shea TM, Fry RC. A multi-omic approach identifies an autism spectrum disorder (ASD) regulatory complex of functional epimutations in placentas from children born preterm. Autism Res 2023; 16:918-934. [PMID: 36938998 PMCID: PMC10192070 DOI: 10.1002/aur.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
Children born preterm are at heightened risk of neurodevelopmental impairments, including Autism Spectrum Disorder (ASD). The placenta is a key regulator of neurodevelopmental processes, though the precise underlying molecular mechanisms remain unclear. Here, we employed a multi-omic approach to identify placental transcriptomic and epigenetic modifications related to ASD diagnosis at age 10, among children born preterm. Working with the extremely low gestational age (ELGAN) cohort, we hypothesized that a pro-inflammatory placental environment would be predictive of ASD diagnosis at age 10. Placental messenger RNA (mRNA) expression, CpG methylation, and microRNA (miRNA) expression were compared among 368 ELGANs (28 children diagnosed with ASD and 340 children without ASD). A total of 111 genes displayed expression levels in the placenta that were associated with ASD. Within these ASD-associated genes is an ASD regulatory complex comprising key genes that predicted ASD case status. Genes with expression that predicted ASD case status included Ewing Sarcoma Breakpoint Region 1 (EWSR1) (OR: 6.57 (95% CI: 2.34, 23.58)) and Bromodomain Adjacent To Zinc Finger Domain 2A (BAZ2A) (OR: 0.12 (95% CI: 0.03, 0.35)). Moreover, of the 111 ASD-associated genes, nine (8.1%) displayed associations with CpG methylation levels, while 14 (12.6%) displayed associations with miRNA expression levels. Among these, LRR Binding FLII Interacting Protein 1 (LRRFIP1) was identified as being under the control of both CpG methylation and miRNAs, displaying an OR of 0.42 (95% CI: 0.17, 0.95). This gene, as well as others identified as having functional epimutations, plays a critical role in immune system regulation and inflammatory response. In summary, a multi-omic approach was used to identify functional epimutations in the placenta that are associated with the development of ASD in children born preterm, highlighting future avenues for intervention.
Collapse
Affiliation(s)
- Anastasia N. Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kyle Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ali Oran
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Julia Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, USA
| | - Karl Kuban
- Department of Pediatrics, Division of Child Neurology, Boston Medical Center, Boston, Massachusetts, USA
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jean Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School/University of Massachusetts Memorial Health Care, Worcester, MA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Amber A. Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Morello G, La Cognata V, Guarnaccia M, D’Agata V, Cavallaro S. Cracking the Code of Neuronal Cell Fate. Cells 2023; 12:1057. [PMID: 37048129 PMCID: PMC10093029 DOI: 10.3390/cells12071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|
6
|
Tshilenge KT, Aguirre CG, Bons J, Gerencser AA, Basisty N, Song S, Rose J, Lopez-Ramirez A, Naphade S, Loureiro A, Battistoni E, Milani M, Wehrfritz C, Holtz A, Hetz C, Mooney SD, Schilling B, Ellerby LM. Proteomic Analysis of Huntington's Disease Medium Spiny Neurons Identifies Alterations in Lipid Droplets. Mol Cell Proteomics 2023; 22:100534. [PMID: 36958627 PMCID: PMC10165459 DOI: 10.1016/j.mcpro.2023.100534] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin (HTT) gene. The resulting polyglutamine (polyQ) tract alters the function of the HTT protein. Although HTT is expressed in different tissues, the medium spiny projection neurons (MSNs) in the striatum are particularly vulnerable in HD. Thus, we sought to define the proteome of human HD patient-derived MSNs. We differentiated HD72 induced pluripotent stem cells and isogenic controls into MSNs and carried out quantitative proteomic analysis. Using data-dependent acquisitions with FAIMS for label-free quantification on the Orbitrap Lumos mass spectrometer, we identified 6,323 proteins with at least two unique peptides. Of these, 901 proteins were altered significantly more in the HD72-MSNs than in isogenic controls. Functional enrichment analysis of upregulated proteins demonstrated extracellular matrix and DNA signaling (DNA replication pathway, double-strand break repair, G1/S transition) with the highest significance. Conversely, processes associated with the downregulated proteins included neurogenesis-axogenesis, the brain-derived neurotrophic factor-signaling pathway, Ephrin-A: EphA pathway, regulation of synaptic plasticity, triglyceride homeostasis cholesterol, plasmid lipoprotein particle immune response, interferon-γ signaling, immune system major histocompatibility complex, lipid metabolism and cellular response to stimulus. Moreover, proteins involved in the formation and maintenance of axons, dendrites, and synapses (e.g., Septin protein members) were dysregulated in HD72-MSNs. Importantly, lipid metabolism pathways were altered, and using quantitative image, we found analysis that lipid droplets accumulated in the HD72-MSN, suggesting a deficit in the turnover of lipids possibly through lipophagy. Our proteomics analysis of HD72-MSNs identified relevant pathways that are altered in MSNs and confirm current and new therapeutic targets for HD.
Collapse
Affiliation(s)
| | - Carlos Galicia Aguirre
- The Buck Institute for Research on Aging, Novato, California, 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Akos A Gerencser
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Nathan Basisty
- The Buck Institute for Research on Aging, Novato, California, 94945, USA; Translational Gerontology Branch, National Institute on Aging (NIA), NIH, Baltimore, Maryland, 21244, USA
| | - Sicheng Song
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jacob Rose
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | | | - Swati Naphade
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Ashley Loureiro
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Elena Battistoni
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Mateus Milani
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile
| | - Cameron Wehrfritz
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Anja Holtz
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Claudio Hetz
- The Buck Institute for Research on Aging, Novato, California, 94945, USA; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Birgit Schilling
- The Buck Institute for Research on Aging, Novato, California, 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA.
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging, Novato, California, 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA.
| |
Collapse
|
7
|
Gharbi T, Liu C, Khan H, Zhang Z, Yang GY, Tang Y. Hypoxic Preconditioned Neural Stem Cell-Derived Extracellular Vesicles Contain Distinct Protein Cargo from Their Normal Counterparts. Curr Issues Mol Biol 2023; 45:1982-1997. [PMID: 36975497 PMCID: PMC10047917 DOI: 10.3390/cimb45030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Hypoxic preconditioning has been demonstrated to increase the resistance of neural stem cells (NSCs) to hypoxic conditions, as well as to improve their capacity for differentiation and neurogenesis. Extracellular vesicles (EVs) have recently emerged as critical mediators of cell–cell communication, but their role in this hypoxic conditioning is presently unknown. Here, we demonstrated that three hours of hypoxic preconditioning triggers significant neural stem cell EV release. Proteomic profiling of EVs from normal and hypoxic preconditioned neural stem cells identified 20 proteins that were upregulated and 22 proteins that were downregulated after hypoxic preconditioning. We also found an upregulation of some of these proteins by qPCR, thus indicating differences also at the transcript level within the EVs. Among the upregulated proteins are CNP, Cyfip1, CASK, and TUBB5, which are well known to exhibit significant beneficial effects on neural stem cells. Thus, our results not only show a significant difference of protein cargo in EVs consequent to hypoxic exposure, but identify several candidate proteins that might play a pivotal role in the cell-to-cell mediated communication underlying neuronal differentiation, protection, maturation, and survival following exposure to hypoxic conditions.
Collapse
|
8
|
Yang K, Chen C, Yan Q, Shen X, Jiang L, Ma R, Lu L, Zhu J, Tian Y, Cai W, D'Alton ME, Zhang J, Kahe K. Combined association of early exposure to long-chain n-3 polyunsaturated fatty acids, mercury and selenium with cognitive performance in 1-year-old infants. ENVIRONMENTAL RESEARCH 2022; 207:112186. [PMID: 34627802 DOI: 10.1016/j.envres.2021.112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Previous studies on long-chain n-3 polyunsaturated fatty acids (LCn3PUFAs) and infant neurodevelopment did not consider effect modifications of mercury (Hg) and selenium (Se). OBJECTIVES To examine the joint association of prenatal LCn3PUFAs, Hg and Se with infant cognitive performance, and to explore whether DNA methylation may explain this potential association. METHODS A total of 484 newborns were enrolled from the Shanghai Birth Cohort with available data on cord blood LCn3PUFA, nail Hg and Se during 2015-2016. Cord blood LCn3PUFA concentrations were assessed by gas chromatography, and nail Hg and Se concentrations were measured using clippings collected within 6 months of birth by inductively coupled plasma mass spectrometry. Five aspects of infant neurodevelopment (communication, gross motor, fine motor, problem-solving, and personal-social skills) were assessed using the Age and Stage Questionnaire (ASQ) at ages 6 and 12 months. Multivariable-adjusted generalized estimating equations models were performed to examine the associations between cord blood LCn3PUFA concentrations and ASQ test scores, and these associations were stratified by nail Hg and Se levels. Epigenome-wide DNA methylation in cord blood was compared in a random subgroup consisting of 19 infants from the highest and 21 from the lowest decile of LCn3PUFA concentrations. RESULTS LCn3PUFAs were not significantly associated with any ASQ test scores. However, in the subgroup with lower Hg (<median 0.13 ppm) and higher Se (≥median 0.87 ppm) levels, infants with higher LCn3PUFA concentrations had higher ASQ scores indicating better performance in gross motor skills [quartile 4 vs. 1: mean difference = 7.78; 95% confidence interval=(3.47, 12.09); Ptrend<0.01; Pinteraction = 0.03]. Additionally, twenty CpG sites were differentially methylated when comparing high to low LCn3PUFA groups. CONCLUSION The association of prenatal LCn3PUFA concentrations with infant neurodevelopment, particularly gross motor skills, may be observed among infants with high Se and low Hg levels.
Collapse
Affiliation(s)
- Kefeng Yang
- Department of Nutrition, Xin Hua Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Cheng Chen
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Qi Yan
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| | - Xiuhua Shen
- Department of Nutrition, Xin Hua Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Linlei Jiang
- Instrumental Analysis Platform, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Ma
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Lu
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Department of Nutrition, Xin Hua Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Mary E D'Alton
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA.
| |
Collapse
|
9
|
Baxter LL, Watkins-Chow DE, Johnson NL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ, Rodriguez-Gil JL. Correlation of age of onset and clinical severity in Niemann-Pick disease type C1 with lysosomal abnormalities and gene expression. Sci Rep 2022; 12:2162. [PMID: 35140266 PMCID: PMC8828765 DOI: 10.1038/s41598-022-06112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a rare, prematurely fatal lysosomal storage disorder which exhibits highly variable severity and disease progression as well as a wide-ranging age of onset, from perinatal stages to adulthood. This heterogeneity has made it difficult to obtain prompt diagnosis and to predict disease course. In addition, small NPC1 patient sample sizes have been a limiting factor in acquiring genome-wide transcriptome data. In this study, primary fibroblasts from an extensive cohort of 41 NPC1 patients were used to validate our previous findings that the lysosomal quantitative probe LysoTracker can be used as a predictor for age of onset and disease severity. We also examined the correlation between these clinical parameters and RNA expression data from primary fibroblasts and identified a set of genes that were significantly associated with lysosomal defects or age of onset, in particular neurological symptom onset. Hierarchical clustering showed that these genes exhibited distinct expression patterns among patient subgroups. This study is the first to collect transcriptomic data on such a large scale in correlation with clinical and cellular phenotypes, providing a rich genomic resource to address NPC1 clinical heterogeneity and discover potential biomarkers, disease modifiers, or therapeutic targets.
Collapse
Affiliation(s)
- Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Morello G, Villari A, Spampinato AG, La Cognata V, Guarnaccia M, Gentile G, Ciotti MT, Calissano P, D’Agata V, Severini C, Cavallaro S. Transcriptional Profiles of Cell Fate Transitions Reveal Early Drivers of Neuronal Apoptosis and Survival. Cells 2021; 10:3238. [PMID: 34831459 PMCID: PMC8620386 DOI: 10.3390/cells10113238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Neuronal apoptosis and survival are regulated at the transcriptional level. To identify key genes and upstream regulators primarily responsible for these processes, we overlayed the temporal transcriptome of cerebellar granule neurons following induction of apoptosis and their rescue by three different neurotrophic factors. We identified a core set of 175 genes showing opposite expression trends at the intersection of apoptosis and survival. Their functional annotations and expression signatures significantly correlated to neurological, psychiatric and oncological disorders. Transcription regulatory network analysis revealed the action of nine upstream transcription factors, converging pro-apoptosis and pro-survival-inducing signals in a highly interconnected functionally and temporally ordered manner. Five of these transcription factors are potential drug targets. Transcriptome-based computational drug repurposing produced a list of drug candidates that may revert the apoptotic core set signature. Besides elucidating early drivers of neuronal apoptosis and survival, our systems biology-based perspective paves the way to innovative pharmacology focused on upstream targets and regulatory networks.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Ambra Villari
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Antonio Gianmaria Spampinato
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Giulia Gentile
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (M.T.C.); (C.S.)
| | - Pietro Calissano
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena, 295, 00161 Rome, Italy;
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Via Santa Sofia, 87, 95123 Catania, Italy;
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (M.T.C.); (C.S.)
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (A.V.); (A.G.S.); (V.L.C.); (M.G.); (G.G.)
| |
Collapse
|
11
|
Rodriguez-Gil JL, Baxter LL, Watkins-Chow DE, Johnson NL, Davidson CD, Carlson SR, Incao AA, Wallom KL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ. Transcriptome of HPβCD-treated Niemann-pick disease type C1 cells highlights GPNMB as a biomarker for therapeutics. Hum Mol Genet 2021; 30:2456-2468. [PMID: 34296265 DOI: 10.1093/hmg/ddab194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
The rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous. This study analyzed RNA-Seq data from 42 NPC1 patient-derived, primary fibroblast cell lines to determine transcriptional changes induced by treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a compound currently under investigation in clinical trials. A total of 485 HPβCD-responsive genes were identified. Pathway enrichment analysis of these genes showed significant involvement in cholesterol and lipid biosynthesis. Furthermore, immunohistochemistry of the cerebellum as well as measurements of serum from Npc1m1N null mice treated with HPβCD and adeno-associated virus (AAV) gene therapy suggests that one of the identified genes, GPNMB, may serve as a useful biomarker of treatment response in NPC1 disease. Overall, this large NPC1 patient-derived dataset provides a comprehensive foundation for understanding the genomic response to HPβCD treatment.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health.,Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health
| | - Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Cristin D Davidson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Steven R Carlson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Arturo A Incao
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | | | | | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | | | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| |
Collapse
|
12
|
Genistein Activates Transcription Factor EB and Corrects Niemann-Pick C Phenotype. Int J Mol Sci 2021; 22:ijms22084220. [PMID: 33921734 PMCID: PMC8073251 DOI: 10.3390/ijms22084220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick type C disease (NPCD) is a lysosomal storage disease (LSD) characterized by abnormal cholesterol accumulation in lysosomes, impaired autophagy flux, and lysosomal dysfunction. The activation of transcription factor EB (TFEB), a master lysosomal function regulator, reduces the accumulation of lysosomal substrates in LSDs where the degradative capacity of the cells is compromised. Genistein can pass the blood-brain barrier and activate TFEB. Hence, we investigated the effect of TFEB activation by genistein toward correcting the NPC phenotype. We show that genistein promotes TFEB translocation to the nucleus in HeLa TFEB-GFP, Huh7, and SHSY-5Y cells treated with U18666A and NPC1 patient fibroblasts. Genistein treatment improved lysosomal protein expression and autophagic flux, decreasing p62 levels and increasing those of the LC3-II in NPC1 patient fibroblasts. Genistein induced an increase in β-hexosaminidase activity in the culture media of NPC1 patient fibroblasts, suggesting an increase in lysosomal exocytosis, which correlated with a decrease in cholesterol accumulation after filipin staining, including cells treated with U18666A and NPC1 patient fibroblasts. These results support that genistein-mediated TFEB activation corrects pathological phenotypes in NPC models and substantiates the need for further studies on this isoflavonoid as a potential therapeutic agent to treat NPCD and other LSDs with neurological compromise.
Collapse
|
13
|
Emanetci E, Çakır T. Network-Based Analysis of Cognitive Impairment and Memory Deficits from Transcriptome Data. J Mol Neurosci 2021; 71:2415-2428. [PMID: 33713319 DOI: 10.1007/s12031-021-01807-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Aging is an inevitable process that negatively affects all living organisms and their vital functions. The brain is one of the most important organs in living beings and is primarily impacted by aging. The molecular mechanisms of learning, memory and cognition are altered over time, and the impairment in these mechanisms can lead to neurodegenerative diseases. Transcriptomics can be used to study these impairments to acquire more detailed information on the affected molecular mechanisms. Here we analyzed learning- and memory-related transcriptome data by mapping it on the organism-specific protein-protein interactome network. Subnetwork discovery algorithms were applied to discover highly dysregulated subnetworks, which were complemented with co-expression-based interactions. The functional analysis shows that the identified subnetworks are enriched with genes having roles in synaptic plasticity, gliogenesis, neurogenesis and cognition, which are reported to be related to memory and learning. With a detailed analysis, we show that the results from different subnetwork discovery algorithms or from different transcriptomic datasets can be successfully reconciled, leading to a memory-learning network that sheds light on the molecular mechanisms behind aging and memory-related impairments.
Collapse
Affiliation(s)
- Elif Emanetci
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
14
|
Lü X, Huang Y, Qu Y, Zhang Y, Zhang Z. Integrated transcriptomic and proteomic study on the different molecular mechanisms of PC12 cell growth on chitosan and collagen/chitosan films. Regen Biomater 2020; 7:553-565. [PMID: 33365141 PMCID: PMC7748450 DOI: 10.1093/rb/rbaa030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this article is to integrate the transcriptomic analysis and the proteomic profiles and to reveal and compare the different molecular mechanisms of PC12 cell growth on the surface of chitosan films and collagen/chitosan films. First, the chitosan films and the collagen/chitosan films were prepared. Subsequently, the cell viability assay was performed; the cell viability of the PC12 cells cultured on the collagen/chitosan films for 24 h was significantly higher than that on the chitosan films. Then, with cDNA microarray, the numbers of differentially expressed genes of PC12 cells on the surface of chitosan and collagen/chitosan films were 13349 and 5165, respectively. Next, the biological pathway analysis indicated that the differentially expressed genes were involved in 40 pathways directly related to cell adhesion and growth. The integrated transcriptomic and our previous proteomic analysis revealed that three biological pathways-extracellular matrix-receptor interaction, focal adhesion and regulation of actin cytoskeleton-were regulated in the processes of protein adsorption, cell adhesion and growth. The adsorbed proteins on the material surfaces further influenced the expression of important downstream genes by regulating the expression of related receptor genes in these three pathways. In comparison, chitosan films had a strong inhibitory effect on PC12 cell adhesion and growth, resulting in the significantly lower cell viability on its surface; on the contrary, collagen/chitosan films were more conducive to promoting PC12 cell adhesion and growth, resulting in higher cell viability.
Collapse
Affiliation(s)
- Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yayun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yiwen Zhang
- SQ Medical Device Co., Ltd, Nanjing 210008, China
| | - Zequn Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Paron F, Dardis A, Buratti E. Pre-mRNA splicing defects and RNA binding protein involvement in Niemann Pick type C disease. J Biotechnol 2020; 318:20-30. [PMID: 32387451 DOI: 10.1016/j.jbiotec.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C (NPC) is an autosomal recessive lysosomal storage disorder due to mutations in NPC1 (95 % cases) or NPC2 genes, encoding NPC1 and NPC2 proteins, respectively. Both NPC1 and NPC2 proteins are involved in transport of intracellular cholesterol and their alteration leads to the accumulation of unesterified cholesterol and other lipids within the lysosomes. The disease is characterized by visceral, neurological and psychiatric symptoms. However, the pathogenic mechanisms that lead to the fatal neurodegeneration are still unclear. To date, several mutations leading to the generation of aberrant splicing variants or mRNA degradation in NPC1 and NPC2 genes have been reported. In addition, different lines of experimental evidence have highlighted the possible role of RNA-binding proteins and RNA-metabolism, in the onset and progression of many neurodegenerative disorders, that could explain NPC neurological features and in general, the disease pathogenesis. In this review, we will provide an overview of the impact of mRNA processing and metabolism on NPC disease pathology.
Collapse
Affiliation(s)
- Francesca Paron
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy.
| | - Emanuele Buratti
- Molecular Pathology, International Institute for Genetic Engineering and Biotechnology, Trieste, Italy.
| |
Collapse
|