1
|
Gharemirshamloo FR, Majumder R, Kumar S U, Doss C GP, Bamdad K, Frootan F, Un C. Effects of the pathological E200K mutation on human prion protein: A computational screening and molecular dynamics approach. J Cell Biochem 2023; 124:254-265. [PMID: 36565210 DOI: 10.1002/jcb.30359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
The human prion protein gene (PRNP) is mapped to the short arm of chromosome 20 (20pter-12). Prion disease is associated with mutations in the prion protein-encoding gene sequence. Earlier studies found that the mutation G127V in the PRNP increases protein stability. In contrast, the mutation E200K, which has the highest mutation rate in the prion protein, causes Creutzfeldt-Jakob disease (CJD) in humans and induces protein aggregation. We aimed to identify the structural mechanisms of E200k and G127V mutations causing CJD. We used a variety of bioinformatic algorithms, including SIFT, PolyPhen, I-Mutant, PhD-SNP, and SNP& GO, to predict the association of the E200K mutation with prion disease. MD simulation is performed, and graphs for root mean square deviation, root mean square fluctuation, radius of gyration, DSSP, principal component analysis, porcupine, and free energy landscape are generated to confirm and prove the stability of the wild-type and mutant protein structures. The protein is analyzed for aggregation, and the results indicate more fluctuations in the protein structure during the simulation owing to the E200K mutation; however, the G127V mutation makes the protein structure stable against aggregation during the simulation.
Collapse
Affiliation(s)
| | - Ranabir Majumder
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Udhaya Kumar S
- Department of Integrative Biology, Laboratory of Integrative Genomics, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Laboratory of Integrative Genomics, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Kourosh Bamdad
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Fateme Frootan
- Institute of Agricultural Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| | - Cemal Un
- Department of Biology, Division of Molecular Biology, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Sikdar S, Banerjee M, Vemparala S. Role of Disulphide Bonds in Membrane Partitioning of a Viral Peptide. J Membr Biol 2022; 255:129-142. [PMID: 35218393 PMCID: PMC8881898 DOI: 10.1007/s00232-022-00218-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023]
Abstract
The importance of disulphide bond in mediating viral peptide entry into host cells is well known. In the present work, we elucidate the role of disulphide (SS) bond in partitioning mechanism of membrane-active Hepatitis A Virus-2B (HAV-2B) peptide, which harbours three cysteine residues promoting formation of multiple SS-bonded states. The inclusion of SS-bond not only results in a compact conformation but also induces distorted α-helical hairpin geometry in comparison to SS-free state. Owing to these, the hydrophobic residues get buried, restricting the insertion of SS-bonded HAV-2B peptide into lipid packing defects and thus the partitioning of the peptide is completely or partly abolished. In this way, the disulphide bond can potentially regulate the partitioning of HAV-2B peptide such that the membrane remodelling effects of this viral peptide are significantly reduced. The current findings may have potential implications in drug designing, targeting the HAV-2B protein by promoting disulphide bond formation within its membrane-active region.
Collapse
Affiliation(s)
- Samapan Sikdar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, 600113, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, 600113, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
3
|
Shi Q, Chen C, Zhang BY, Zhou W, Xiao K, Dong XP. Redox induces diverse effects on recombinant human wild-type PrP and mutated PrP with inserted or deleted octarepeats. Int J Mol Med 2018; 41:2413-2419. [PMID: 29393338 DOI: 10.3892/ijmm.2018.3441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 11/30/2017] [Indexed: 11/05/2022] Open
Abstract
Normal prion protein (PrP) contains two cysteines at amino acids 179 and 214, which may form intra‑ and interpeptide disulfide bonds. To determine the possible effects of this disulfide bridge on the biochemical features of PrP, prokaryotic recombinant human wild‑type PrP (PG5), and mutated PrPs with seven extra octarepeats (PG12) or with all five octarepeats removed (PG0), were subjected to redox in vitro. Sedimentation assays revealed a large portion of aggregation in redox‑treated PG5, but not in PG0 and PG12. Circular dichroism analysis detected increased β‑sheet and decreased α‑helix in PG5 subjected to redox, increased random‑coil and decreased β‑sheet in PG0, and increased random‑coil, but limited changes to β‑sheet content, in PG12. Thioflavin T fluorescence tests indicated that fluorescent value was increased in PG5 subjected to redox. In addition, proteinase K (PK) digestions indicated that PK resistance was stronger in PG12 and PG0 compared with in PG5; redox enhanced the PK resistance of all three PrP constructs, particularly PG0 and PG12. These data indicated that formation of a disulfide bond induces marked alterations in the secondary structure and biochemical characteristics of PrP. In addition, the octarepeat region within the PrP peptide markedly influences the effects of redox on the biochemical phenotypes of PrP, thus highlighting the importance of the number of octarepeats in the biological functions of PrP.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
4
|
Zhan YA, Abskharon R, Li Y, Yuan J, Zeng L, Dang J, Martinez MC, Wang Z, Mikol J, Lehmann S, Bu S, Steyaert J, Cui L, Petersen RB, Kong Q, Wang GX, Wohlkonig A, Zou WQ. Quiescin-sulfhydryl oxidase inhibits prion formation in vitro. Aging (Albany NY) 2017; 8:3419-3429. [PMID: 27959866 PMCID: PMC5270677 DOI: 10.18632/aging.101132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/24/2016] [Indexed: 02/03/2023]
Abstract
Prions are infectious proteins that cause a group of fatal transmissible diseases in animals and humans. The scrapie isoform (PrPSc) of the cellular prion protein (PrPC) is the only known component of the prion. Several lines of evidence have suggested that the formation and molecular features of PrPSc are associated with an abnormal unfolding/refolding process. Quiescin-sulfhydryl oxidase (QSOX) plays a role in protein folding by introducing disulfides into unfolded reduced proteins. Here we report that QSOX inhibits human prion propagation in protein misfolding cyclic amplification reactions and murine prion propagation in scrapie-infected neuroblastoma cells. Moreover, QSOX preferentially binds PrPSc from prion-infected human or animal brains, but not PrPC from uninfected brains. Surface plasmon resonance of the recombinant mouse PrP (moPrP) demonstrates that the affinity of QSOX for monomer is significantly lower than that for octamer (312 nM vs 1.7 nM). QSOX exhibits much lower affinity for N-terminally truncated moPrP (PrP89-230) than for the full-length moPrP (PrP23-231) (312 nM vs 2 nM), suggesting that the N-terminal region of PrP is critical for the interaction of PrP with QSOX. Our study indicates that QSOX may play a role in prion formation, which may open new therapeutic avenues for treating prion diseases.
Collapse
Affiliation(s)
- Yi-An Zhan
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Romany Abskharon
- VIB Center for Structural Biology, VIB, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium.,National Institute of Oceanography and Fisheries (NIFO), 11516 Cairo, Egypt.,CNS, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yu Li
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jue Yuan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Liang Zeng
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Johnny Dang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Manuel Camacho Martinez
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, The People's Republic of China
| | - Jacqueline Mikol
- Hôpital Lariboisière, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Sylvain Lehmann
- IRMB -Hôpital ST ELOI, CHU de Montpellier, Montpellier, France
| | - Shizhong Bu
- Diabetes Research Center, Ningbo University, The People's Republic of China
| | - Jan Steyaert
- VIB Center for Structural Biology, VIB, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, The People's Republic of China
| | - Robert B Petersen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Gong-Xiang Wang
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China
| | - Alexandre Wohlkonig
- VIB Center for Structural Biology, VIB, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Wen-Quan Zou
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, The People's Republic of China.,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, The People's Republic of China
| |
Collapse
|
5
|
Li Y, Yan J, Zhang X, Huang K. Disulfide bonds in amyloidogenesis diseases related proteins. Proteins 2013; 81:1862-73. [DOI: 10.1002/prot.24338] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Li
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Juan Yan
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Xin Zhang
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Kun Huang
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
- Centre for Biomedicine Research; Wuhan Institute of Biotechnology; Wuhan Hubei People's Republic of China 430074
| |
Collapse
|
6
|
Sanchez-Garcia J, Arbelaez D, Jensen K, Rincon-Limas DE, Fernandez-Funez P. Polar substitutions in helix 3 of the prion protein produce transmembrane isoforms that disturb vesicle trafficking. Hum Mol Genet 2013; 22:4253-66. [PMID: 23771030 DOI: 10.1093/hmg/ddt276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Prion diseases encompass a diverse group of neurodegenerative conditions characterized by the accumulation of misfolded prion protein (PrP) isoforms. Other conformational variants of PrP have also been proposed to contribute to neurotoxicity in prion diseases, including misfolded intermediates as well as cytosolic and transmembrane isoforms. To better understand PrP neurotoxicity, we analyzed the role of two highly conserved methionines in helix 3 on PrP biogenesis, folding and pathogenesis. Expression of the PrP-M205S and -M205,212S mutants in Drosophila led to hyperglycosylation, intracellular accumulation and widespread conformational changes due to failure of oxidative folding. Surprisingly, PrP-M205S and -M205,212S acquired a transmembrane topology (Ctm) previously linked to mutations in the signal peptide (SP) and the transmembrane domain (TMD). PrP-M205,212S also disrupted the accumulation of key neurodevelopmental proteins in lipid rafts, resulting in shortened axonal projections. These results uncover a new role for the hydrophobic domain in promoting oxidative folding and preventing the formation of neurotoxic Ctm PrP, mechanisms that may be relevant in the pathogenesis of both inherited and sporadic prion diseases.
Collapse
|
7
|
Lisa S, Domingo B, Martínez J, Gilch S, Llopis JF, Schätzl HM, Gasset M. Failure of prion protein oxidative folding guides the formation of toxic transmembrane forms. J Biol Chem 2012; 287:36693-701. [PMID: 22955286 DOI: 10.1074/jbc.m112.398776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mechanism by which pathogenic mutations in the globular domain of the cellular prion protein (PrP(C)) increase the likelihood of misfolding and predispose to diseases is not yet known. Differences in the evidences provided by structural and metabolic studies of these mutants suggest that in vivo folding could be playing an essential role in their pathogenesis. To address this role, here we use the single or combined M206S and M213S artificial mutants causing labile folds and express them in cells. We find that these mutants are highly toxic, fold as transmembrane PrP, and lack the intramolecular disulfide bond. When the mutations are placed in a chain with impeded transmembrane PrP formation, toxicity is rescued. These results suggest that oxidative folding impairment, as on aging, can be fundamental for the genesis of intracellular neurotoxic intermediates key in prion neurodegenerations.
Collapse
Affiliation(s)
- Silvia Lisa
- Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Haeri M, Wӧllert T, Langford GM, Gilbert JL. Electrochemical control of cell death by reduction-induced intrinsic apoptosis and oxidation-induced necrosis on CoCrMo alloy in vitro. Biomaterials 2012; 33:6295-304. [DOI: 10.1016/j.biomaterials.2012.05.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/20/2012] [Indexed: 01/01/2023]
|
9
|
Zawada Z, Šebestík J, Šafařík M, Bouř P. Dependence of the Reactivity of Acridine on Its Substituents: A Computational and Kinetic Study. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Chich JF, Chapuis C, Henry C, Vidic J, Rezaei H, Noinville S. Vesicle permeabilization by purified soluble oligomers of prion protein: a comparative study of the interaction of oligomers and monomers with lipid membranes. J Mol Biol 2010; 397:1017-30. [PMID: 20156446 DOI: 10.1016/j.jmb.2010.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/02/2010] [Accepted: 02/07/2010] [Indexed: 11/28/2022]
Abstract
The conversion of normal cellular prion protein (PrP) into its pathological isoform, scrapie PrP, may occur at the cell surface or, more probably, in late endosomes. The early events leading to the structural conversion of PrP appear to be related to the presence of more or less stable soluble oligomers, which might mediate neurotoxicity. In the current study, we investigate the interaction of alpha-rich PrP monomers and beta-rich size-exclusion-chromatography-purified PrP oligomers with lipid membranes. We compare their structural properties when associated with lipid bilayers and study their propensities to permeabilize the membrane at physiological pH. We also study the influence of the N-terminal flexible region (residues 24-103) by comparing full-length PrP(24-234) and N-terminally truncated PrP(104-234) oligomers. We showed that both 12-subunit oligomers cause an immediate and large increase in the permeability of the membrane, whereas equivalent amounts of monomeric forms cause no detectable leakage. Although the two monomeric PrP constructs undergo an alpha-to-beta conformational change when bound to the negatively charged membrane, only the full-length form of monomeric PrP has a weak fusogenic effect. Finally, the oligomers affect the integrity of the membrane differently from the monomers, independently of the presence of the N-terminal flexible domain. As for other forms of amyloidogenesis, a reasonable mechanism for the toxicity arising from PrP fibrillization must be associated with low-molecular-weight oligomeric intermediates, rather than with mature fibrils. Knowledge of the mechanism of action of these soluble oligomers would have a high impact on the development of novel therapeutic targets.
Collapse
Affiliation(s)
- J-F Chich
- INRA, Unité de Virologie Immunologie Moléculaires, 78 352 Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|