1
|
Fan H, Bai Q, Yang Y, Shi X, Du G, Yan J, Shi J, Wang D. The key roles of reactive oxygen species in microglial inflammatory activation: Regulation by endogenous antioxidant system and exogenous sulfur-containing compounds. Eur J Pharmacol 2023; 956:175966. [PMID: 37549725 DOI: 10.1016/j.ejphar.2023.175966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Aberrant innate immunity in the brain has been implicated in the pathogenesis of several central nervous system (CNS) disorders, including Alzheimer's disease, Huntington's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and depression. Except for extraparenchymal CNS-associated macrophages, which predominantly afford protection against peripheral invading pathogens, it has been reported that microglia, a population of macrophage-like cells governing CNS immune defense in nearly all neurological diseases, are the main CNS resident immune cells. Although microglia have been recognized as the most important source of reactive oxygen species (ROS) in the CNS, ROS also may underlie microglial functions, especially M1 polarization, by modulating redox-sensitive signaling pathways. Recently, endogenous antioxidant systems, including glutathione, hydrogen sulfide, superoxide dismutase, and methionine sulfoxide reductase A, were found to be involved in regulating microglia-mediated neuroinflammation. A series of natural sulfur-containing compounds, including S-adenosyl methionine, S-methyl-L-cysteine, sulforaphane, DMS, and S-alk(enyl)-l-cysteine sulfoxide, modulating endogenous antioxidant systems have been discovered. We have summarized the current knowledge on the involvement of endogenous antioxidant systems in regulating microglial inflammatory activation and the effects of sulfur-containing compounds on endogenous antioxidant systems. Finally, we discuss the possibilities associated with compounds targeting the endogenous antioxidant system to treat neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Qianqian Bai
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yang Yang
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jian Shi
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
2
|
Wang XL, Jiang RW. Therapeutic Potential of Superoxide Dismutase Fused with Cell-Penetrating Peptides in Oxidative Stress-Related Diseases. Mini Rev Med Chem 2022; 22:2287-2298. [PMID: 35227183 DOI: 10.2174/1389557522666220228150127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Superoxide dismutase (SOD) is a well-known cellular antioxidant enzyme. However, exogenous SOD cannot be used to protect tissues from oxidative damage due to the low permeability of the cell membrane. Cell-penetrating peptides (CPPs) are a class of short peptides that can cross the cell membrane. Recombinant fusion protein that fuses SOD protein with CPP (CPP-SOD) can cross various tissues and organs as well as the blood-brain barrier. CPP-SODs can relieve severe oxidative damage in various tissues caused by radiation, ischemia, inflammation, and chemotherapy by clearing the reactive oxygen species, reducing the expression of inflammatory factors, and inhibiting NF-κB/MAPK signaling pathways. Therefore, the clinical application of CPP-SODs provide new therapeutic strategies for a variety of oxidative stress-related disorders, such as Parkinson's disease, diabetes, obesity, cardiac fibrosis, and premature aging.
Collapse
Affiliation(s)
- Xiao-Lu Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Sun Y, Ren J, Wang F. [6]-Gingerol impedes 7,12-dimethylbenz(a)anthracene-induced inflammation and cell proliferation-associated hamster buccal pouch carcinogenesis through modulating Nrf2 signaling events. J Biochem Mol Toxicol 2020; 35:e22689. [PMID: 33347680 DOI: 10.1002/jbt.22689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/22/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
The present study examines the chemopreventive role of [6]-gingerol, an active component of ginger, on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis models. The HBP has been developed with an addition of 0.5% of DMBA to the HBP area three times per week, up to the end of the 16th experimental week. At the end of the experiment, we noticed 100% tumor incidence and precancerous lesions, such as dysplasia, hyperplasia, keratosis, and well-differentiated squamous cell carcinoma, in DMBA-induced HBP. Furthermore, we observed that [6]-gingerol inhibited the increased thiobarbituric acid-reactive substances and decreased antioxidant levels in DMBA-induced hamsters. Moreover, [6]-gingerol inhibits DMBA-exposed over expression of inflammatory markers (inducible nitric oxide synthase, interleukin [IL]-1β, IL-6, cyclooxygenase-2, and tumor necrosis factor-α) and cell proliferation markers (cyclin D1, proliferating cell nuclear antigen); induces proapoptotic markers in HBP. Nuclear factor erythroid-2-related factor-2 (Nrf2) is a major antioxidant transcription factor, which regulates the antioxidant gene-dependent scavenge of tumor proliferation and apoptosis. Overexpression of Nrf2 signaling plays a pivotal role and can be a novel target in preventing carcinogenesis. In this study, [6]-gingerol restores the DMBA-induced depletion of Nrf2 signaling and thereby prevents buccal pouch carcinogenesis in hamsters. These results point out that [6]-gingerol impedes the responses of inflammatory and cell proliferation-associated progression of cancer through the action of Nrf2 signaling.
Collapse
Affiliation(s)
- Yugang Sun
- Oral and maxillofacial surgery, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Jinmin Ren
- Health Management Center, Binzhou Municipal Hospital of Traditional Chinese Medicine, Binzhou, Shandong, China
| | - Fang Wang
- Department of Oncology, The Second People Hospital of Dezhou, Dezhou, Shandong, China
| |
Collapse
|
4
|
Yang Y, Wei Z, Teichmann AT, Wieland FH, Wang A, Lei X, Zhu Y, Yin J, Fan T, Zhou L, Wang C, Chen L. Development of a novel nitric oxide (NO) production inhibitor with potential therapeutic effect on chronic inflammation. Eur J Med Chem 2020; 193:112216. [PMID: 32208222 DOI: 10.1016/j.ejmech.2020.112216] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 02/08/2023]
Abstract
Inflammation is a complex biological response to stimuli. Activated macrophages induced excessively release of pro-inflammatory cytokines and mediators such as endogenous radical nitric oxide (NO) play a significant role in the progression of multiple inflammatory diseases. Both natural and synthetic chalcones possess a wide range of bioactivities. In this work, thirty-nine chalcones and three related compounds, including several novel ones, based on bioactive kava chalcones were designed, synthesized and their inhibitory effects on NO production in RAW 264.7 cells were evaluated. The novel compound (E)-1-(2'-hydroxy-4',6'-dimethoxyphenyl)-3-(3-methoxy-4-(3-morpholinopropoxy)phenyl)prop-2-en-1-one (53) exhibited a better inhibitory activity (84.0%) on NO production at 10 μM (IC50 = 6.4 μM) with the lowest cytotoxicity (IC50 > 80 μM) among the tested compounds. Besides, western blot analysis indicated that compound 53 was a potent down-regulator of inducible nitric oxide synthase (iNOS) protein. Docking study revealed that compound 53 also can dock into the active site of iNOS. Furthermore, at the dose of 10 mg/kg/day, compound 53 could both significantly suppress the progression of inflammation on collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AIA) models. In addition, the structure-activity relationship (SAR) of the kava chalcones based analogs was also depicted.
Collapse
Affiliation(s)
- Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, PR China; Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Zhe Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, PR China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Frank Heinrich Wieland
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Amu Wang
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Xiangui Lei
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yue Zhu
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Jinxiang Yin
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Tiantian Fan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Li Zhou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Chao Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, PR China.
| |
Collapse
|
5
|
Annamalai G, Suresh K. [6]-Shogaol attenuates inflammation, cell proliferation via modulate NF-κB and AP-1 oncogenic signaling in 7,12-dimethylbenz[a]anthracene induced oral carcinogenesis. Biomed Pharmacother 2018; 98:484-490. [PMID: 29287195 DOI: 10.1016/j.biopha.2017.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor-kappaB (NF-κB) and activator protein 1 (AP-1) is a major transcription factor which regulates many biological and pathological processes such as inflammation and cell proliferation, which are major implicates in cancer progression. [6]-Shogaol ([6]-SHO) is a major constituent of ginger, exhibits various biological properties such as anti-oxidants, anti-inflammation and anti-tumor. Recently, we proven that [6]-SHO prevents oral squamous cell carcinoma by activating proapoptotic factors in in vitro and in vivo experimental model. However, the preventive efficacy of [6]-SHO in 7,12-dimethylbenz[a]anthracene (DMBA) induced hamster buccal pouch carcinogenesis (HBP) has not been fully elucidated, so far. Hence, we aimed to investigate the effect of [6]-SHO on inflammation and cell proliferation by inhibiting the translocation of NF-κB and AP-1 in DMBA induced HBP carcinogenesis. In this study, we observed upregulation of inflammatory markers (COX-2, iNOS, TNF-α, interleukin-1 and -6), cell proliferative markers (Cyclin D1, PCNA and Ki-67) and aberrant activation of NF-κB, AP-1, IKKβ, c-jun, c-fos and decreased IκB-α in DMBA induced hamsters. Conversely, oral administration of [6]-SHO strongly inhibited constitutive phosphorylation and degradation of IκB and inhibit phosphorylation of c-jun, c-fos, resulting in inhibition of nuclear translocation of NF-κBp65 and AP-1. Thus, inhibition of NF-κB and AP-1 activation by [6]-SHO attenuates inflammation and cell proliferative response in DMBA induced hamsters. Our finding suggested that [6]-SHO is a novel functional agent capable of preventing DMBA induced inflammation and cell proliferation associated tumorigenesis by modulating multiple signalling molecules.
Collapse
Affiliation(s)
- Govindhan Annamalai
- Department of Biochemistry and Biotechnology, Annnamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Kathiresan Suresh
- Department of Biochemistry and Biotechnology, Annnamalai University, Annamalainagar, Tamil Nadu, 608 002, India.
| |
Collapse
|
6
|
Jing L, Liu XD, Yang HX, Zhang M, Wang Y, Duan L, Zhang J, Lu L, Yang T, Wang DM, Chen LW, Wang MQ. ERK potentiates p38 in central sensitization induced by traumatic occlusion. Neuroscience 2016; 340:445-454. [PMID: 27865869 DOI: 10.1016/j.neuroscience.2016.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/22/2016] [Accepted: 11/08/2016] [Indexed: 12/28/2022]
Abstract
This study was to investigate the role of p38 activation via ERK1/2 phosphorylation in neurons and microglia of the spinal trigeminal subnucleus caudalis (Vc) in the promotion of orofacial hyperalgesia induced by unilateral anterior crossbite (UAC) traumatic occlusion in adult rats. U0126, a p-ERK1/2 inhibitor, was injected intracisternally before UAC implant. The effects of the U0126 injection were compared to those following the injection of SB203580, a p-p38 inhibitor. Mechanical hyperalgesia was evaluated via pressure pain threshold measurements. Brain stem tissues were processed for a Western blot analysis to evaluate the activation of ERK1/2 and p38. Double immunofluorescence was also performed to observe the expression of p-ERK1/2 and p-p38 in neurons (labeled by NeuN) and microglia (labeled by OX42). The data showed that UAC caused orofacial hyperalgia ipsilaterally on d1 to d7, peaking on d3 (P<0.05). An upregulation of p-ERK1/2 was observed in the ipsilateral Vc on d1 to d3, peaking on d1. An upregulation of p-p38 was also observed on d1 to d7, peaking on d3 (P<0.05). p-ERK1/2 primarily co-localized with NeuN and, to a lesser extent, with OX42, while p-p38 co-localized with both NeuN and OX42. Pretreatment with U0126 prevented the upregulation of both p-ERK1/2 and p-p38. Similarly to an intracisternal injection of SB203580, U0126 pretreatment attenuated the UAC-induced orofacial hyperalgesia. These data indicate that UAC caused orofacial hyperalgesia by inducing central sensitization via the activation of ERK1/2 and p38 in both neurons and microglia in the Vc, potentially impacting the effects of p-ERK1/2 during p38 activation.
Collapse
Affiliation(s)
- Lei Jing
- State Key Laboratory of Military Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changlexi Road, Xi'an 710032, China
| | - Xiao-Dong Liu
- State Key Laboratory of Military Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changlexi Road, Xi'an 710032, China
| | - Hong-Xu Yang
- State Key Laboratory of Military Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changlexi Road, Xi'an 710032, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changlexi Road, Xi'an 710032, China
| | - Ying Wang
- State Key Laboratory of Military Stomatology, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontal Disease, School of Stomatology, The Fourth Military Medical University, 145 Changlexi Road, Xi'an 710032, China
| | - Li Duan
- Institute of Neurosciences, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changlexi Road, Xi'an 710032, China
| | - Lei Lu
- State Key Laboratory of Military Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changlexi Road, Xi'an 710032, China
| | - Ting Yang
- State Key Laboratory of Military Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changlexi Road, Xi'an 710032, China
| | - Dong-Mei Wang
- State Key Laboratory of Military Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changlexi Road, Xi'an 710032, China
| | - Liang-Wei Chen
- Institute of Neurosciences, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China.
| | - Mei-Qing Wang
- State Key Laboratory of Military Stomatology, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changlexi Road, Xi'an 710032, China.
| |
Collapse
|
7
|
Liu TP, Chen YP, Chou CM, Chiu TT, Chen CT. Therapeutic evaluation of HIV transduction basic domain-conjugated superoxide dismutase solution on suppressive effects of the formation of peroxynitrite and expression of COX-2 in murine skin. J Biomed Sci 2016; 23:11. [PMID: 26786970 PMCID: PMC4719741 DOI: 10.1186/s12929-016-0226-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 01/12/2016] [Indexed: 01/18/2023] Open
Abstract
Background Homeostasis of reactive oxygen species (ROS) in the skin is regulated by antioxidant defenses. The inflammatory states of skin diseases which range from acute rashes to chronic conditions are related to the level of ROS. The involvement of superoxide dismutase (SOD) in restoring the antioxidant capacity can then neutralize the inflammatory response. Results We found that denatured Tat-SOD formulated in an aqueous medium could be delivered into mouse skin and the penetration signals of Tat-SOD were detected in the epidermis and dermis. According to immunohistochemical staining, Tat-SOD successfully suppressed inflammation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), the expression of sodium nitroferricyanide (SNP)-induced cyclooxygenase-2 (COX-2), and the production of nitrotyrosine proteins. In nerve growth factor (NGF) induced differentiated PC12 pheochromocytoma cells, we demonstrated that the denatured Tat-SOD regained its antioxidant activity and effectively protected PC12 cells from DNA fragmentation induced by paraquat. Using a luciferase reporter assay, the data was shown Tat-SOD protected PC12 cells from ROS damage, through suppression of COX-2 or nuclear factor-κB (NF-κB) activity occurred at the transcriptional level. Conclusion We showed that Tat-SOD inhibited SNP-induced COX-2 expression similarly to celecoxib and prevented the formation of peroxynitrite as 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The results suggest that denatured Tat-SOD solution may perform potential protein therapy for patients suffering from disorders related to ROS.
Collapse
Affiliation(s)
- Tsang-Pai Liu
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.,Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Ping Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Chou
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Ting Chiu
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tsu Chen
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Seo KH, Park MJ, Ra JE, Han SI, Nam MH, Kim JH, Lee JH, Seo WD. Saponarin from barley sprouts inhibits NF-κB and MAPK on LPS-induced RAW 264.7 cells. Food Funct 2015; 5:3005-13. [PMID: 25238253 DOI: 10.1039/c4fo00612g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Saponarin (SA), a natural flavonoid, is known for its antioxidant and hepatoprotective activities. SA is the predominant compound (1142.7 ± 0.9 mg per 100 g) in barley sprouts, constituting 72% of the total polyphenol content. We investigated, for the first time, the effects of SA from barley sprouts on cellular anti-inflammatory responses. In lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, SA suppressed the activation of NF-κB, as evidenced by the inhibition of NF-κB DNA binding, nuclear translocation, IκBα phosphorylation, and reporter gene expression, and it downregulated the expression of the pro-inflammatory mediator IL-6. Furthermore, SA reduced the transcription of NF-κB target molecules COX2 and FLIP inhibited the phosphorylation of mitogen-activated protein kinases ERK and p38. These results suggest that SA isolated from barley sprouts exerts anti-inflammatory effects in LPS-induced RAW 264.7 macrophages via inhibition of NF-κB, ERK and p38 signaling. Thus, SA may be a promising natural anti-inflammatory agent.
Collapse
Affiliation(s)
- Kyung Hye Seo
- Department of Functional Crops, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Miryang 627-803, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fan H, Wu PF, Zhang L, Hu ZL, Wang W, Guan XL, Luo H, Ni M, Yang JW, Li MX, Chen JG, Wang F. Methionine sulfoxide reductase A negatively controls microglia-mediated neuroinflammation via inhibiting ROS/MAPKs/NF-κB signaling pathways through a catalytic antioxidant function. Antioxid Redox Signal 2015; 22:832-47. [PMID: 25602783 PMCID: PMC4367238 DOI: 10.1089/ars.2014.6022] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Oxidative burst is one of the earliest biochemical events in the inflammatory activation of microglia. Here, we investigated the potential role of methionine sulfoxide reductase A (MsrA), a key antioxidant enzyme, in the control of microglia-mediated neuroinflammation. RESULTS MsrA was detected in rat microglia and its expression was upregulated on microglial activation. Silencing of MsrA exacerbated lipopolysaccharide (LPS)-induced activation of microglia and the production of inflammatory markers, indicating that MsrA may function as an endogenous protective mechanism for limiting uncontrolled neuroinflammation. Application of exogenous MsrA by transducing Tat-rMsrA fusion protein into microglia attenuated LPS-induced neuroinflammatory events, which was indicated by an increased Iba1 (a specific microglial marker) expression and the secretion of pro-inflammatory cytokines, and this attenuation was accompanied by inhibiting multiple signaling pathways such as p38 and ERK mitogen-activated protein kinases (MAPKs) and nuclear factor kappaB (NF-κB). These effects were due to MsrA-mediated reactive oxygen species (ROS) elimination, which may be derived from a catalytic effect of MsrA on the reaction of methionine with ROS. Furthermore, the transduction of Tat-rMsrA fusion protein suppressed the activation of microglia and the expression of pro-inflammatory factors in a rat model of neuroinflammation in vivo. INNOVATION This study provides the first direct evidence for the biological significance of MsrA in microglia-mediated neuroinflammation. CONCLUSION Our data provide a profound insight into the role of endogenous antioxidative defense systems such as MsrA in the control of microglial function.
Collapse
Affiliation(s)
- Hua Fan
- 1 Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan City, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Multiple pathways are responsible for anti-inflammatory and cardiovascular activities of Hordeum vulgare L. J Transl Med 2014; 12:316. [PMID: 25428431 PMCID: PMC4258264 DOI: 10.1186/s12967-014-0316-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/28/2014] [Indexed: 11/12/2022] Open
Abstract
Background Hordeum vulgare L. (HV or barley) is used by traditional healers to treat various inflammatory and cardiovascular diseases, without the knowledge of pharmacologic rationale behind its actions. This study was designed to explore the potential scientific mechanism(s) that could explain the use of Hordeum vulgare in traditional medicine as a treatment for various inflammatory and cardiovascular diseases. Methods A crude extract and its three fractions were prepared from HV and screened for the inhibition of platelet aggregation and various metabolites of cyclooxygenase (COX), lipoxygenase (LOX) pathways of arachidonic acid (AA) metabolism as well as for its effects on certain antioxidant enzymes. Platelet aggregation was monitored using turbidometric principle, AA metabolism through radioimmunoassay and antioxidant enzymes by commercial kits using spectrophotometer. Results Results show that HV exhibited activities against all human platelet agonists used except adenine diphosphate, and inhibited both COX and LOX pathways of AA metabolism. It also elevated the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). However, these activities were distributed in various fractions of HV. Aqueous fraction was most potent in elevating SOD activity; chloroform fraction had concentrated compounds responsible for COX inhibition while n-hexane seems to possess compounds responsible for LOX inhibition as well as the only fraction enhancing the activity of GPx. Conclusions These results suggest the likely mechanisms responsible for observed anti-inflammatory and cardiovascular effects of HV in traditional medicine.
Collapse
|
11
|
Račková L. Cholesterol load of microglia: contribution of membrane architecture changes to neurotoxic power? Arch Biochem Biophys 2013; 537:91-103. [PMID: 23831332 DOI: 10.1016/j.abb.2013.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 12/15/2022]
Abstract
Considerable evidence provides a link between hypercholesterolemia and ageing-related neurodegenerative diseases. The present study was aimed to provide a complex view on the effects caused by cholesterol- and cholesterol 5α,6α-epoxide-load in microglia, with particular emphasize put on membrane proteins. Prolonged application of oxysterol significantly enhanced LPS-stimulated association of cytosolic NADPH-oxidase factor p47[phox] with detergent-resistant microdomains (DRMs) in BV-2 cells. Although the treatment with both sterols does not influence the portion of CD36 receptor in DRMs, its apparent surface-cellular expression was altered. Even though sterol-treatment potentiated oxidant production by microglia, as well as their phagocytosis, these effects, however, appeared to be independent of cholesterol profusion in the membrane. In addition, oxysterol-treatment resulted in a loss of DRMs-associated activity of 26S proteasome, the protease critically regulating both protein homeostasis and immune signaling in microglia. Oxysterol relatively ameliorated cytotoxic effects of inflammed microglia on co-cultured PC12 cells. The outcomes of this study suggest that cholesterol and cholesterol oxides can differentially modulate microglia resulting either in impairment of their immune functionalities or enhanced neurotoxic power. Moreover, these findings shed light on possible complexity of this effect, produced by simultaneous affection of the levels, distribution and function of the critical proteins within microglial membrane compartments.
Collapse
Affiliation(s)
- Lucia Račková
- Institute of Experimental Pharmacology & Toxicology Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
12
|
Kwon DJ, Ju SM, Youn GS, Choi SY, Park J. Suppression of iNOS and COX-2 expression by flavokawain A via blockade of NF-κB and AP-1 activation in RAW 264.7 macrophages. Food Chem Toxicol 2013; 58:479-86. [PMID: 23727179 DOI: 10.1016/j.fct.2013.05.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/03/2013] [Accepted: 05/17/2013] [Indexed: 12/22/2022]
Abstract
Flavokawain A, a major constituent of chalcones derived from kava extracts, exerts various biological activities such as anti-tumor activities. In this study, we examined the suppressive effect of flavokawain A on LPS-induced expression of pro-inflammatory mediators and the molecular mechanisms responsible for these activities in the murine macrophages. Flavokawain A significantly suppressed expression of iNOS and COX-2, as well as the subsequent production of NO and PGE2 in the LPS-stimulated RAW 264.7 cells. Flavokawain A significantly inhibited LPS-induced activation of NF-κB and AP-1 signaling pathways. In addition, flavokawain A inhibited activation of JNK and p38 MAPK which was responsible for expression of iNOS and COX-2 in the LPS-stimulated RAW 264.7 cells. Furthermore, flavokawain A suppressed LPS-induced expression of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6. These results suggest that flavokawain A may exert anti-inflammatory responses by suppressing LPS-induced expression of pro-inflammatory mediators via blockage of NF-κB-AP-1-JNK/p38 MAPK signaling pathways in the murine macrophages.
Collapse
Affiliation(s)
- Dong-Joo Kwon
- Department of Biomedical Science, Hallym University, Chunchon, Republic of Korea
| | | | | | | | | |
Collapse
|
13
|
Chemokine fractalkine attenuates overactivation and apoptosis of BV-2 microglial cells induced by extracellular ATP. Neurochem Res 2013; 38:1002-12. [PMID: 23456675 DOI: 10.1007/s11064-013-1010-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/16/2013] [Accepted: 02/20/2013] [Indexed: 12/31/2022]
Abstract
Microglia, the resident macrophages of the central nervous system (CNS), are activated by a myriad of signaling molecules including ATP, an excitatory neurotransmitter and neuron-glial signal with both neuroprotective and neurotoxic effects. The "microglial dysfunction hypothesis" of neurodegeneration posits that overactivated microglia have a reduced neuroprotective capacity and instead promote neurotoxicity. The chemokine fractalkine (FKN), one of only two chemokines constitutively expressed in the CNS, is neuroprotective in several in vivo and in vitro models of CNS pathology. It is possible, but not yet demonstrated, that high ATP concentrations induce microglial overactivation and apoptosis while FKN reduces ATP-mediated microglial overactivation and cytotoxicity. In the current study, we examined the effects of FKN on ATP-induced microglial apoptosis and the underlying mechanisms in the BV-2 microglial cell line. Exposure to ATP induced a dose-dependent reduction in BV-2 cell viability. Prolonged exposure to a high ATP concentration (3 mM for 2 h) transformed ramified (quiescent) BV-2 cells to the amoebic state, induced apoptosis, and reduced Akt phosphorylation. Pretreatment with FKN significantly inhibited ATP-induced microglial apoptosis and transformed amoebic microglia to ramified quiescent cells. These protective effects were blocked by chemical inhibition of PI3 K, strongly implicating the PI3 K/Akt signaling pathway in FKN-mediated protection of BV-2 cells from cytotoxic ATP concentrations. Prevention of ATP-induced microglial overactivation and apoptosis may enhance the neuroprotective capacity of these cells against both acute insults and chronic CNS diseases.
Collapse
|
14
|
Kaneko YS, Ota A, Nakashima A, Mori K, Nagatsu I, Nagatsu T. Regulation of oxidative stress in long-lived lipopolysaccharide-activated microglia. Clin Exp Pharmacol Physiol 2012; 39:599-607. [PMID: 22519637 DOI: 10.1111/j.1440-1681.2012.05716.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Previously, we reported that an optimal dose of lipopolysaccharide (LPS) markedly extends the life span of mouse primary-cultured microglia by suppressing apoptotic and autophagic cell death pathways. The aim of the present study was to assess how these cells protect themselves against reactive oxygen species (ROS) generated by LPS treatment. 2. The study was conducted in microglia obtained from murine neonate brain, which are destined to die within a few days under ordinary culture conditions. 3. The generation of ROS was maximal after 15 h LPS treatment (1 ng/mL LPS and 100 ng/mL LPS). The expression of inducible nitric oxide (NO) synthase protein was significantly increased by Day 1 of LPS treatment and was followed by the production of NO. The expression of either Cu/Zn- or Mn-superoxide dismutase protein (SOD) was also increased by 16 h and Day 1 of LPS treatment. LPS did not affect the expression of Cu/Zn- and Mn-SOD proteins, nor did it extend the life span of microglia that had mutated Toll-like receptor (TLR) 4. 4. The findings of the present study suggest that SODs function as a potent barrier to overcome ROS generated in primary-cultured microglia following LPS treatment and that TLR4 may be significantly involved in inducing these proteins. The microglia may be able to protect themselves against oxidative stress, allowing them to live for more than 1 month. Because long-lived microglia may play a critical role in the exacerbation of neurodegeneration, bringing activated microglia back to their resting stage could be a new and promising strategy to inhibit the deterioration underlying neurodegenerative disorders.
Collapse
Affiliation(s)
- Yoko S Kaneko
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Lijia Z, Zhao S, Wang X, Wu C, Yang J. A self-propelling cycle mediated by reactive oxide species and nitric oxide exists in LPS-activated microglia. Neurochem Int 2012; 61:1220-30. [PMID: 23000131 DOI: 10.1016/j.neuint.2012.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
It has been widely accepted that microglia, the innate immune cells in the brain, can be chronically activated in response to neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which has been considered as the main reason responsible for the progressive nature of neurodegenerative diseases. In the present study, it was found that LPS (lipopolysaccharide) significantly induced the activation of N9 microglia, and the increase of NO level induced by pretreatment of LPS could last after the removal of LPS. The culture medium of activated microglia significantly decreased the viability of rat primary cortical neuron. These results can be blocked by the antioxidant N-acetylcysteine (NAC) and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase inhibitor diphenyleneiodonium sulfate (DPI), suggesting that intracellular reactive oxide species (iROS) released from the activated microglial cells may continue to further activate microglia. Next, it was shown that the iROS level increased rapidly after the LPS treatment in microglia cells followed by the NO production through the regulation of iNOS (inducible nitric oxide synthase) expression. The increase of iROS could be reversed by gp91phox (the critical and catalytic subunit of NADPH oxidase) siRNA. Moreover, NO released from sodium nitroprusside (SNP) was able to increase the iROS production of N9 microglia by regulating of the activity and the expression of NADPH oxidase. In conclusion, our research suggests for the first time that there may exist a self-propelling cycle in microglial cells possibly mediated by iROS and NO when they become activated by LPS. It may be responsible partially for the ongoing microglial activation and the progressive nature of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhang Lijia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Ju SM, Goh AR, Kwon DJ, Youn GS, Kwon HJ, Bae YS, Choi SY, Park J. Extracellular HIV-1 Tat induces human beta-defensin-2 production via NF-kappaB/AP-1 dependent pathways in human B cells. Mol Cells 2012; 33:335-41. [PMID: 22450687 PMCID: PMC3887796 DOI: 10.1007/s10059-012-2287-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/24/2022] Open
Abstract
Defensins, a family of antimicrobial peptides, are one of the first lines of host defense. Human beta-defensins (hBD) such as hBD-2 and -3 have anti-HIV activity. Previous studies have shown that HIV-1 virion can induce the expression of hBD, although the exact components of HIV-1 virion that are responsible for hBD expression have not yet been elucidated. In this study, we examined the effect of HIV-1 Tat on the expression of hBD in B cells. Stimulation of B cells with HIV-1 Tat protein significantly increased the mRNA and protein levels of hBD-2. HIV-1 Tat also induced the activation of a reporter gene for hBD-2 in a dose-dependent manner in B cells. Pretreatment of B cells with a JNK inhibitor suppressed HIV-1 Tat-induced hBD-2 expression. Pretreatment of B cells with AP-1 inhibitors or NF-κB inhibitors led to a decrease in HIV-1 Tat-induced protein and mRNA expression of hBD-2. Taken together, our results indicate that HIV-1 Tat can up-regulate the expression of hBD-2 via JNK-NF-κB/AP-1-dependent pathways in human B cells.
Collapse
Affiliation(s)
- Sung Mi Ju
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Ah Ra Goh
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Dong-Joo Kwon
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Gi Soo Youn
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | | | | | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Jinseu Park
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| |
Collapse
|
17
|
Hsu YF, Sheu JR, Lin CH, Chen WC, Hsiao G, Ou G, Chiu PT, Hsu MJ. MAPK phosphatase-1 contributes to trichostatin A inhibition of cyclooxygenase-2 expression in human umbilical vascular endothelial cells exposed to lipopolysaccharide. Biochim Biophys Acta Gen Subj 2011; 1810:1160-9. [PMID: 21911040 DOI: 10.1016/j.bbagen.2011.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/13/2011] [Accepted: 08/26/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors have emerged as a new class of antitumor agents because they were demonstrated to induce cell cycle arrest, promote cell apoptosis, and inhibit metastasis. Recently, HDAC inhibitors were also shown to exhibit pronounced anti-inflammatory properties. However, the underlying mechanism contributing to the suppression of inflammatory responses by HDAC inhibitors remains to be fully defined. In the present study, we explored the actions of trichostatin A (TSA), a potent HDAC inhibitor, on lipopolysaccharide (LPS)-induced cyclooxygenase (COX)-2 expression in human umbilical vascular endothelial cells (HUVECs). METHODS HUVECs were exposed to LPS in the absence or presence of TSA. COX-2 expression and signaling molecules (JNK, p38MAPK and c-jun) activated by LPS were assessed. RESULTS The LPS-induced cox-2 messenger RNA and protein were markedly suppressed by TSA. TSA inhibited JNK and p38MAPK phosphorylation in cells exposed to LPS. Treatment of cells with a JNK signaling inhibitor (JNK inhibitor II) or a p38MAPK inhibitor (p38MAPK inhibitor III) markedly inhibited LPS-induced COX-2 expression. TSA suppression of JNK and p38MAPK phosphorylation and subsequent COX-2 expression were restored by selective inhibition of MKP-1 using MKP-1 siRNA. In addition, TSA caused an increase in MKP-1 phosphatase activity in HUVECs. In conclusion, TSA may cause MKP-1 activation to dephosphorylate JNK and p38MAPK, leading to the downregulation of COX-2 in HUVECs stimulated by LPS, a proinflammatory stimulus. GENERAL SIGNIFICANCE MKP-1 contributes to TSA's protective actions in HUVECs exposed to LPS. The present study also supports the therapeutic value of TSA in treating inflammatory vascular diseases.
Collapse
Affiliation(s)
- Ya-Fen Hsu
- Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Song HY, Ju SM, Goh AR, Kwon DJ, Choi SY, Park JS. Suppression of TNF-alpha-induced MMP-9 expression by a cell-permeable superoxide dismutase in keratinocytes. BMB Rep 2011; 44:462-7. [DOI: 10.5483/bmbrep.2011.44.7.462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Eguchi H, Fujiwara N, Sakiyama H, Yoshihara D, Suzuki K. Hydrogen peroxide enhances LPS-induced nitric oxide production via the expression of interferon beta in BV-2 microglial cells. Neurosci Lett 2011; 494:29-33. [DOI: 10.1016/j.neulet.2011.02.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 01/27/2023]
|
20
|
Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23. Biochem Biophys Res Commun 2011; 406:359-65. [DOI: 10.1016/j.bbrc.2011.02.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 02/11/2011] [Indexed: 11/23/2022]
|