1
|
Zhong J, Ji X, Zhao Y, Jia Y, Song C, Lv J, Chen Y, Zhou Y, Lv X, Yang Z, Zhang Z, Xu Q, Wang W, Chen H, Cui A, Li Y, Meng ZX. Identification of BAF60b as a Chromatin-Remodeling Checkpoint of Diet-Induced Fatty Liver Disease. Diabetes 2024; 73:1615-1630. [PMID: 39046829 PMCID: PMC11417444 DOI: 10.2337/db24-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Overnutrition has gradually become the primary causative factor in nonalcoholic fatty liver disease (NAFLD). However, how nutritional signals are integrated to orchestrate the transcriptional programs important for NAFLD progression remains poorly understood. We identified hepatic BAF60b as a lipid-sensitive subunit of the switch/sucrose nonfermentable chromatin-remodeling complex that is negatively associated with liver steatosis in mice and humans. Hepatic BAF60b deficiency promotes high-fat diet (HFD)-induced liver steatosis in mice, whereas transgenic expression of BAF60b in the liver attenuates HFD-induced obesity and NAFLD, both accompanied by a marked regulation of peroxisome proliferator-activated receptor γ (PPARγ) expression. Mechanistically, through motif analysis of liver assay for transposase-accessible chromatin sequencing and multiple validation experiments, we identified C/EBPβ as the transcription factor that interacts with BAF60b to suppress Pparγ gene expression, thereby controlling hepatic lipid accumulation and NAFLD progression. This work identifies hepatic BAF60b as a negative regulator of liver steatosis through C/EBPβ-dependent chromatin remodeling. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jing Zhong
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Xiuyu Ji
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yali Zhao
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China
| | - Yihe Jia
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Churui Song
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghuan Lv
- Department of Pathology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yuying Chen
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Yanping Zhou
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xue Lv
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhuoyin Yang
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zheyu Zhang
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiyao Xu
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihong Wang
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Haiyan Chen
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Aoyuan Cui
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhuo-Xian Meng
- Departments of Pathology and Pathophysiology and Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Chronic Disease Research Institute, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Asanoma K, Yagi H, Onoyama I, Cui L, Hori E, Kawakami M, Maenohara S, Hachisuga K, Tomonobe H, Kodama K, Yasunaga M, Ohgami T, Okugawa K, Yahata H, Kitao H, Kato K. The BHLHE40‒PPM1F‒AMPK pathway regulates energy metabolism and is associated with the aggressiveness of endometrial cancer. J Biol Chem 2024; 300:105695. [PMID: 38301894 PMCID: PMC10904277 DOI: 10.1016/j.jbc.2024.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
BHLHE40 is a basic helix-loop-helix transcription factor that is involved in multiple cell activities including differentiation, cell cycle, and epithelial-to-mesenchymal transition. While there is growing evidence to support the functions of BHLHE40 in energy metabolism, little is known about the mechanism. In this study, we found that BHLHE40 expression was downregulated in cases of endometrial cancer of higher grade and advanced disease. Knockdown of BHLHE40 in endometrial cancer cells resulted in suppressed oxygen consumption and enhanced extracellular acidification. Suppressed pyruvate dehydrogenase (PDH) activity and enhanced lactated dehydrogenase (LDH) activity were observed in the knockdown cells. Knockdown of BHLHE40 also led to dephosphorylation of AMPKα Thr172 and enhanced phosphorylation of pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) Ser293 and lactate dehydrogenase A (LDHA) Tyr10. These results suggested that BHLHE40 modulates PDH and LDH activity by regulating the phosphorylation status of PDHA1 and LDHA. We found that BHLHE40 enhanced AMPKα phosphorylation by directly suppressing the transcription of an AMPKα-specific phosphatase, PPM1F. Our immunohistochemical study showed that the expression of BHLHE40, PPM1F, and phosphorylated AMPKα correlated with the prognosis of endometrial cancer patients. Because AMPK is a central regulator of energy metabolism in cancer cells, targeting the BHLHE40‒PPM1F‒AMPK axis may represent a strategy to control cancer development.
Collapse
Affiliation(s)
- Kazuo Asanoma
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Cui
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minoru Kawakami
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoji Maenohara
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhisa Hachisuga
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Tomonobe
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Kodama
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Yasunaga
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Okugawa
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Kitao
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Sato F, Bhawal UK, Oikawa K, Muragaki Y. Loss of Dec1 inhibits alcohol-induced hepatic lipid accumulation and circadian rhythm disorder. BMC Mol Cell Biol 2024; 25:1. [PMID: 38166556 PMCID: PMC10763066 DOI: 10.1186/s12860-023-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
Chronic alcohol exposure increases liver damage such as lipid accumulation and hepatitis, resulting in hepatic cirrhosis. Chronic alcohol intake is known to disturb circadian rhythms in humans and animals. DEC1, a basic helix-loop-helix transcription factor, plays an important role in the circadian rhythm, inflammation, immune responses, and tumor progression. We have previously shown that Dec1 deficiency inhibits stresses such as periodontal inflammation and perivascular fibrosis of the heart. However, the significance of Dec1 deficiency in chronic alcohol consumption remains unclear. In the present study, we investigated whether the biological stress caused by chronic alcohol intake is inhibited in Dec1 knockout mice. We treated control and Dec1 knockout mice for three months by providing free access to 10% alcohol. The Dec1 knockout mice consumed more alcohol than control mice, however, we observed severe hepatic lipid accumulation and circadian rhythm disturbance in control mice. In contrast, Dec1 knockout mice exhibited little effect on these outcomes. We also investigated the expression of peroxisome proliferator-activated receptors (PPARs) and AMP-activated protein kinase (AMPK), which are involved in the regulation of fatty acid metabolism. Immunohistochemical analysis revealed increases of phosphorylation AMPK and PPARa but decreases PPARg in Dec1 knockout mice compared to that in control mice. This indicates a molecular basis for the inhibition of hepatic lipid accumulation in alcohol-treated Dec1 knockout mice. These results suggest a novel function of Dec1 in alcohol-induced hepatic lipid accumulation and circadian rhythm disorders.
Collapse
Affiliation(s)
- Fuyuki Sato
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Sunto-gun, 411-8777, Japan.
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, 641- 8509, Japan.
| | - Ujjal K Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
- Center for Global Health Research , Saveetha Medical College and Hospitals , Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Kosuke Oikawa
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, 641- 8509, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama, 641- 8509, Japan
| |
Collapse
|
4
|
Sun Q, Zhao J, Liu L, Wang X, Gu X. Identification of the potential biomarkers associated with circadian rhythms in heart failure. PeerJ 2023; 11:e14734. [PMID: 36699999 PMCID: PMC9869779 DOI: 10.7717/peerj.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023] Open
Abstract
Background Heart failure (HF) is a syndrome with multiple clinical symptoms resulting from damage to the heart's structure and/or function with various pathogenic factors, which has developed as one of the most severe threats to human health. Approximately 13% of genes and about 8% of proteins contained in the heart are rhythmic, which could lead to HF if disrupted. Herein, we aimed to identify the circadian rhythms-related hub genes as potential biomarkers contributing to the identification and treatment of HF. Methods Expression data of ischemic and dilated cardiomyopathy samples with or without HF were collected from the GEO database. First, genes with differential expression in HF and healthy samples were identified, named as differentially expressed genes (DEGs), which were then intersected with circadian rhythms-related genes to identify circadian rhythms-related DEGs. A protein-protein interaction (PPI) network was established to screen hub genes. The performance of the hub genes to identify HF among healthy controls was assessed by referring to the receiver operating characteristic (ROC) curve. Additionally, quantitative real-time polymerase chain reaction (RT-PCR) was run to further validate the hub genes depending on clinical human peripheral blood samples. Results A total of 10,163 DEGs were determined, composed of 4,615 up-regulated genes and 5,548 down-regulated genes in HF patients in comparison to healthy controls. By overlapping the circadian rhythms-related genes in the Circadian Gene DataBase (CGDB), 723 circadian rhythms-related DEGs were obtained, mainly enriched in regulating lipid metabolic process, circadian rhythm and AMPK signaling pathway. Eight hub genes were screened out through the PPI network. The ROC curve indicated the high accuracy of five hub genes with AUC > 0.7, which also showed high accuracy validated by the external validation dataset. Furthermore, according to the results of quantitative RT-PCR, the HF group showed significantly increased relative mRNA expression of CRY2 and BHLHE41 while the decreased ARNTL and NPAS2 in comparison to controls, indicating the four hub genes as potential biomarkers of HF. Conclusion Our study validated that ARNTL, CRY2, BHLHE41 and NPAS2 could serve as potential biomarkers of circadian rhythm in HF. These results may provide a reference for employing novel markers or targets for the diagnosis and treatment of HF.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China,Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jun Zhao
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Li Liu
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiaoliang Wang
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xinshun Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Wang CY, Qiu ZJ, Zhang P, Tang XQ. Differentiated Embryo-Chondrocyte Expressed Gene1 and Parkinson's Disease: New Insights and Therapeutic Perspectives. Curr Neuropharmacol 2023; 21:2251-2265. [PMID: 37132111 PMCID: PMC10556388 DOI: 10.2174/1570159x21666230502123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 05/04/2023] Open
Abstract
Differentiated embryo-chondrocyte expressed gene1 (DEC1), an important transcription factor with a basic helix-loop-helix domain, is ubiquitously expressed in both human embryonic and adult tissues. DEC1 is involved in neural differentiation and neural maturation in the central nervous system (CNS). Recent studies suggest that DEC1 protects against Parkinson's disease (PD) by regulating apoptosis, oxidative stress, lipid metabolism, immune system, and glucose metabolism disorders. In this review, we summarize the recent progress on the role of DEC1 in the pathogenesis of PD and provide new insights into the prevention and treatment of PD and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zheng-Jie Qiu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
6
|
Li X, Zhang X, Hou X, Bing X, Zhu F, Wu X, Guo N, Zhao H, Xu F, Xia M. Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension. Apoptosis 2022; 28:432-446. [PMID: 36484960 DOI: 10.1007/s10495-022-01797-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is a common risk factor for pulmonary arterial hypertension (PAH). As a hypoxia-induced transcription factor, differentially expressed in chondrocytes (DEC1) negatively regulates the transcription of peroxisome proliferative activated receptor-γ (PPARγ), a recognized protective factor of PAH. However, whether and how DEC1 is associated with PAH pathogenesis remains unclear. In the present study, we found that DEC1 was increased in lungs and pulmonary arterial smooth muscle cells (PASMCs) of rat models of OSA-associated PAH. Oxidative indicators and inflammatory cytokines were also elevated in the blood of the rats. Similarly, hypoxia-treated PASMCs displayed enhanced DEC1 expression and reduced PPARγ expression in vitro. Functionally, DEC1 overexpression exacerbated reactive oxygen species (ROS) production and the expression of pro-inflammatory cytokines (such as TNFα, IL-1β, IL-6, and MCP-1) in PASMCs. Conversely, shRNA knockdown of Dec1 increased PPARγ expression but attenuated hypoxia-induced oxidative stress and inflammatory responses in PASMCs. Additionally, DEC1 overexpression promoted PASMC proliferation, which was drastically attenuated by a PPARγ agonist rosiglitazone. Collectively, these results suggest that hypoxia-induced DEC1 inhibits PPARγ, and that this is a predominant mechanism underpinning oxidative stress and inflammatory responses in PASMCs during PAH. DEC1 could be used as a potential target to treat PAH.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiang Zhang
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaozhi Hou
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Xin Bing
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Fangyuan Zhu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Xinhao Wu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Na Guo
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Hui Zhao
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Fenglei Xu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| |
Collapse
|
7
|
Li X, Liu C, Qi W, Meng Q, Zhao H, Teng Z, Xu R, Wu X, Zhu F, Qin Y, Zhao M, Xu F, Xia M. Endothelial Dec1-PPARγ Axis Impairs Proliferation and Apoptosis Homeostasis Under Hypoxia in Pulmonary Arterial Hypertension. Front Cell Dev Biol 2021; 9:757168. [PMID: 34765605 PMCID: PMC8576361 DOI: 10.3389/fcell.2021.757168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/27/2021] [Indexed: 11/15/2022] Open
Abstract
Background: The hypoxia-induced pro-proliferative and anti-apoptotic characteristics of pulmonary arterial endothelial cells (PAECs) play critical roles in pulmonary vascular remodeling and contribute to hypoxic pulmonary arterial hypertension (PAH) pathogenesis. However, the mechanism underlying this hypoxic disease has not been fully elucidated. Methods: Bioinformatics was adopted to screen out the key hypoxia-related genes in PAH. Gain- and loss-function assays were then performed to test the identified hypoxic pathways in vitro. Human PAECs were cultured under hypoxic (3% O2) or normoxic (21% O2) conditions. Hypoxia-induced changes in apoptosis and proliferation were determined by flow cytometry and Ki-67 immunofluorescence staining, respectively. Survival of the hypoxic cells was estimated by cell counting kit-8 assay. Expression alterations of the target hypoxia-related genes, cell cycle regulators, and apoptosis factors were investigated by Western blot. Results: According to the Gene Expression Omnibus dataset (GSE84538), differentiated embryo chondrocyte expressed gene 1-peroxisome proliferative-activated receptor-γ (Dec1-PPARγ) axis was defined as a key hypoxia-related signaling in PAH. A negative correlation was observed between Dec1 and PPARγ expression in patients with hypoxic PAH. In vitro observations revealed an increased proliferation and a decreased apoptosis in PAECs under hypoxia. Furthermore, hypoxic PAECs exhibited remarkable upregulation of Dec1 and downregulation of PPARγ. Dec1 was confirmed to be crucial for the imbalance of proliferation and apoptosis in hypoxic PAECs. Furthermore, the pro-surviving effect of hypoxic Dec1 was mediated through PPARγ inhibition. Conclusion: For the first time, Dec1-PPARγ axis was identified as a key determinant hypoxia-modifying signaling that is necessary for the imbalance between proliferation and apoptosis of PAECs. These novel endothelial signal transduction events may offer new diagnostic and therapeutic options for patients with hypoxic PAH.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengcheng Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wenwen Qi
- Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiu Meng
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui Zhao
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenxiao Teng
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Runtong Xu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinhao Wu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fangyuan Zhu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yiming Qin
- College of Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenglei Xu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
8
|
Park S, Park JH, Kang UB, Choi SK, Elfadl A, Ullah HMA, Chung MJ, Son JY, Yun HH, Park JM, Yim JH, Jung SJ, Kim SH, Choi YC, Kim DS, Shin JH, Park JS, Hur K, Lee SH, Lee EJ, Hwang D, Jeong KS. Nogo-A regulates myogenesis via interacting with Filamin-C. Cell Death Discov 2021; 7:1. [PMID: 33414425 PMCID: PMC7791112 DOI: 10.1038/s41420-020-00384-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 12/23/2022] Open
Abstract
Among the three isoforms encoded by Rtn4, Nogo-A has been intensely investigated as a central nervous system inhibitor. Although Nogo-A expression is increased in muscles of patients with amyotrophic lateral sclerosis, its role in muscle homeostasis and regeneration is not well elucidated. In this study, we discovered a significant increase in Nogo-A expression in various muscle-related pathological conditions. Nogo−/− mice displayed dystrophic muscle structure, dysregulated muscle regeneration following injury, and altered gene expression involving lipid storage and muscle cell differentiation. We hypothesized that increased Nogo-A levels might regulate muscle regeneration. Differentiating myoblasts exhibited Nogo-A upregulation and silencing Nogo-A abrogated myoblast differentiation. Nogo-A interacted with filamin-C, suggesting a role for Nogo-A in cytoskeletal arrangement during myogenesis. In conclusion, Nogo-A maintains muscle homeostasis and integrity, and pathologically altered Nogo-A expression mediates muscle regeneration, suggesting Nogo-A as a novel target for the treatment of myopathies in clinical settings.
Collapse
Affiliation(s)
- SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Un-Beom Kang
- R&D Division, BERTIS, Inc., Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Seong-Kyoon Choi
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.,Core Protein Resources Center, DGIST, Daegu, 42988, Republic of Korea
| | - Ahmed Elfadl
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - H M Arif Ullah
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Yoon Son
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyun Ho Yun
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Min Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Hyuk Yim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung-Jun Jung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Hyup Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young-Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06058, Republic of Korea
| | - Dae-Seong Kim
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea. .,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Wang X, Lu Y, Zhu L, Zhang H, Feng L. Inhibition of miR-27b Regulates Lipid Metabolism in Skeletal Muscle of Obese Rats During Hypoxic Exercise by Increasing PPARγ Expression. Front Physiol 2020; 11:1090. [PMID: 32982800 PMCID: PMC7489097 DOI: 10.3389/fphys.2020.01090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Hypoxic exercise may represent a novel therapeutic strategy to reduce and prevent obesity through the regulation of lipid metabolism. During hypoxic exercise, the targeting of peroxisome proliferator-activated receptor gamma (PPARγ) by miR-27b has been proposed to be one of the mechanisms involved in the modulation of lipid metabolism. We have previously shown that miR-27b can repress PPARγ and lipid metabolism-associated factors, thereby affecting lipid metabolism during hypoxic exercise in a rat model of obesity. In the current study, we aimed to confirm the role of miR-27b in the regulation of lipid metabolism. First, miR-27b expression was either upregulated or downregulated through the injection of adeno-associated virus (AAV) 9 containing a miR-27b expression cassette or miR-27b-3p inhibitor, respectively, into the right gastrocnemius muscle of obese rats. The rats were then subjected to a 4-week program of hypoxic exercise, and a series of parameters related to lipid metabolism were systematically evaluated, including body composition, blood lipid levels, miR-27b RNA levels, and mRNA and protein levels of PPARγ and those of its downstream lipid metabolism-associated factors. No significant differences were found in body composition between rats expressing different levels of miR-27b. However, regarding blood lipids, miR-27b overexpression led to increased concentrations of triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and free fatty acids (FFAs), while inhibition of miR-27b decreased the total cholesterol (TC) level and increased that of high-density lipoprotein cholesterol (HDL-C). At the mRNA level, miR-27b overexpression downregulated the expression of Pparγ, but upregulated that of lipid metabolism-associated factors such as heart-type fatty acid-binding protein (H-FABP), fatty acid transport protein 1 (FATP1), adipose triglyceride lipase (ATGL), and lipoprotein lipase (LPL), whereas miR-27b inhibition elicited the opposite effect; however, inhibition of miR-27b led to elevated cholesterol 7 alpha-hydroxylase (CYP7A1) and fatty acid translocase 36 (CD36) levels. Similarly, at the protein level, miR-27b overexpression promoted a decrease in the concentration of PPARγ, whereas miR-27b inhibition led to an increase in PPARγ levels, as well as those of CYP7A1, CD36, ATGL, and LPL. Overall, our results indicated that hypoxic exercise regulates lipid metabolism via the miR-27b/PPARγ pathway and modulates ATGL and LPL expression through inducing their post-transcriptional modifications.
Collapse
Affiliation(s)
- Xuebing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,College of Physical Education, Guangxi University, Nanning, China
| | - Yingli Lu
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Lei Zhu
- School of Sports Science, Qufu Normal University, Qufu, China
| | - Haibo Zhang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Lianshi Feng
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
10
|
Kiss Z, Mudryj M, Ghosh PM. Non-circadian aspects of BHLHE40 cellular function in cancer. Genes Cancer 2020; 11:1-19. [PMID: 32577154 PMCID: PMC7289903 DOI: 10.18632/genesandcancer.201] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
While many genes specifically act as oncogenes or tumor suppressors, others are tumor promoters or suppressors in a context-dependent manner. Here we will review the basic-helix-loop-helix (BHLH) protein BHLHE40, (also known as BHLHB2, STRA13, DEC1, or SHARP2) which is overexpressed in gastric, breast, and brain tumors; and downregulated in colorectal, esophageal, pancreatic and lung cancer. As a transcription factor, BHLHE40 is expressed in the nucleus, where it binds to target gene promoters containing the E-box hexanucleotide sequence, but can also be expressed in the cytoplasm, where it stabilizes cyclin E, preventing cyclin E-mediated DNA replication and cell cycle progression. In different organs BHLHE40 regulates different targets; hence may have different impacts on tumorigenesis. BHLHE40 promotes PI3K/Akt/mTOR activation in breast cancer, activating tumor progression, but suppresses STAT1 expression in clear cell carcinoma, triggering tumor suppression. Target specificity likely depends on cooperation with other transcription factors. BHLHE40 is activated in lung and esophageal carcinoma by the tumor suppressor p53 inducing senescence and suppressing tumor growth, but is also activated under hypoxic conditions by HIF-1α in gastric cancer and hepatocellular carcinomas, stimulating tumor progression. Thus, BHLHE40 is a multi-functional protein that mediates the promotion or suppression of cancer in a context dependent manner.
Collapse
Affiliation(s)
- Zsofia Kiss
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Mudryj
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Microbiology and Immunology, University of California, Davis, CA, USA
| | - Paramita M. Ghosh
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
11
|
Kuo CL, Hsieh Li SM, Liang SY, Liu ST, Huang LC, Wang WM, Yen LC, Huang SM. The antitumor properties of metformin and phenformin reflect their ability to inhibit the actions of differentiated embryo chondrocyte 1. Cancer Manag Res 2019; 11:6567-6579. [PMID: 31410055 PMCID: PMC6643064 DOI: 10.2147/cmar.s210637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background Differentiated embryo chondrocyte 1 (DEC1) is a helix-loop-helix transcription factor that directly binds to the class B E-box in target genes. DEC1 exerts both pro-survival and pro-apoptotic effects in a cell- and tissue-dependent manner. Its actions play role the progression of cancer remains unclear. Methods We first examined the functional roles of DEC1 using the transient promoter reporter assay. Then, the knockdown of DEC1 expression was performed with the short hairpin RNA strategy in HeLa and A2058 cancer cell lines to check the cell cycle and mitochondrial function profile using the flow cytometry and Seahorse assays. We later clarified the role of DEC1 in the tumorigenesis using the colony formation, anchorage-independent growth assay, and cellular proliferation analysis. Results In the present study, we tested two guanide-containing drugs, metformin and phenformin, and found that both exhibit cytotoxicity against HeLa cervical carcinoma and A2058 melanoma cells. This effect was mediated, at least in part, through activation of the AMPK pathway; degradation of important cellular proteins, such as DEC1 and p53; and suppression of mitochondrial function, colony formation, and anchorage-independent cell proliferation. Our results further suggest that the cytotoxicity of metformin and phenformin reflect the impact of the repressive actions of DEC1 on gene expression, including DEC1 itself. This in turn suppresses both anchorage-independent growth and cell proliferation. Conclusion These findings provide several lines of evidence suggesting that DEC1 activity contributes to tumorigenicity and that the antitumor properties of biguanides reflect their ability to inhibit DEC1 functions.
Collapse
Affiliation(s)
- Chun-Lin Kuo
- Department of Orthopaedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taiwan, Republic of China
| | - Shu-Man Hsieh Li
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Shu-Yi Liang
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Wei-Ming Wang
- Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taiwan, Republic of China
| | - Li-Chen Yen
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China.,Department of Microbiology and Immunology, National Defense Medical Center, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| |
Collapse
|
12
|
Oh HYP, Visvalingam V, Wahli W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology. FASEB J 2019; 33:9706-9730. [PMID: 31237779 DOI: 10.1096/fj.201802681rr] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gut is colonized by commensal microorganisms, predominately bacteria that have coevolved in symbiosis with their host. The gut microbiota has been extensively studied in recent years, and many important findings on how it can regulate host metabolism have been unraveled. In healthy individuals, feeding timing and type of food can influence not only the composition but also the circadian oscillation of the gut microbiota. Host feeding habits thus influence the type of microbe-derived metabolites produced and their concentrations throughout the day. These microbe-derived metabolites influence many aspects of host physiology, including energy metabolism and circadian rhythm. Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-activated transcription factors that regulate various metabolic processes such as fatty acid metabolism. Similar to the gut microbiota, PPAR expression in various organs oscillates diurnally, and studies have shown that the gut microbiota can influence PPAR activities in various metabolic organs. For example, short-chain fatty acids, the most abundant type of metabolites produced by anaerobic fermentation of dietary fibers by the gut microbiota, are PPAR agonists. In this review, we highlight how the gut microbiota can regulate PPARs in key metabolic organs, namely, in the intestines, liver, and muscle. Knowing that the gut microbiota impacts metabolism and is altered in individuals with metabolic diseases might allow treatment of these patients using noninvasive procedures such as gut microbiota manipulation.-Oh, H. Y. P., Visvalingam, V., Wahli, W. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology.
Collapse
Affiliation(s)
- Hui Yun Penny Oh
- Interdisciplinary Graduate School, Institute for Health Technologies, Nanyang Technological University, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Vivegan Visvalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Unité Mixte de Recherche (UMR) 1331, Institut National de la Recherche Agronomique (INRA)-ToxAlim, Toulouse, France.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Shi D, Chen J, Wang J, Yao J, Huang Y, Zhang G, Bao Z. Circadian Clock Genes in the Metabolism of Non-alcoholic Fatty Liver Disease. Front Physiol 2019; 10:423. [PMID: 31139087 PMCID: PMC6517678 DOI: 10.3389/fphys.2019.00423] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common disease, which is characterized by the accumulation of triglycerides in the hepatocytes without excess alcohol intake. Circadian rhythms can participate in lipid, glucose, and cholesterol metabolism and are closely related to metabolism seen in this disease. Circadian clock genes can modulate liver lipid metabolism. Desynchrony of circadian rhythms and the influences imparted by external environmental stimuli can increase morbidity. By contrast, synchronizing circadian rhythms can help to alleviate the metabolic disturbance seen in NAFLD. In this review, we have discussed the current research connections that exist between the circadian clock and the metabolism of NAFLD, and we have specifically focused on the key circadian clock genes, Bmal1, Clock, Rev-Erbs, Rors, Pers, Crys, Nocturnin, and DECs.
Collapse
Affiliation(s)
- Dongmei Shi
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China.,Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Jiaofeng Wang
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China.,Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Jianfeng Yao
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yiqin Huang
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Gansheng Zhang
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhijun Bao
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China.,Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Wnt3a disrupts GR-TEAD4-PPARγ2 positive circuits and cytoskeletal rearrangement in a β-catenin-dependent manner during early adipogenesis. Cell Death Dis 2019; 10:16. [PMID: 30622240 PMCID: PMC6325140 DOI: 10.1038/s41419-018-1249-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 11/09/2022]
Abstract
Adipogenesis is a process which induces or represses many genes in a way to drive irreversible changes of cell phenotypes; lipid accumulation, round cell-shape, secreting many adipokines. As a master transcription factor (TF), PPARγ2 induces several target genes to orchestrate these adipogenic changes. Thus induction of Pparg2 gene is tightly regulated by many adipogenic and also anti-adipogenic factors. Four hours after the treatment of adipogenic hormones, more than fifteen TFs including glucocorticoid receptor (GR), C/EBPβ and AP-1 cooperatively bind the promoter of Pparg2 gene covering 400 bps, termed "hotspot". In this study, we show that TEA domain family transcription factor (TEAD)4 reinforces occupancy of both GR and C/EBPβ on the hotspot of Pparg2 during early adipogenesis. Our findings that TEAD4 requires GR for its expression and for the ability to bind its own promoter and the hotspot region of Pparg2 gene indicate that GR is a common component of two positive circuits, which regulates the expression of both Tead4 and Pparg2. Wnt3a disrupts these mutually related positive circuits by limiting the nuclear location of GR in a β-catenin dependent manner. The antagonistic effects of β-catenin extend to cytoskeletal remodeling during the early phase of adipogenesis. GR is necessary for the rearrangements of both cytoskeleton and chromatin of Pparg2, whereas Wnt3a inhibits both processes in a β-catenin-dependent manner. Our results suggest that hotspot formation during early adipogenesis is related to cytoskeletal remodeling, which is regulated by the antagonistic action of GR and β-catenin, and that Wnt3a reinforces β-catenin function.
Collapse
|
15
|
Hong X, Jeyifous O, Ronilo M, Marshall J, Green WN, Standley S. A novel function for the ER retention signals in the C-terminus of kainate receptor subunit, GluK5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:459-473. [PMID: 30339823 DOI: 10.1016/j.bbamcr.2018.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/30/2022]
Abstract
Classically, endoplasmic reticulum (ER) retention signals in secreted integral membrane proteins impose the requirement to assemble with other cognate subunits to form functional assemblies before they can exit the ER. We report that GluK5 has two ER retention signals in its cytoplasmic C-terminus: an arginine-based signal and a di-leucine motif previously thought to be an endocytic motif. GluK5 assembles with GluK2, but surprisingly GluK2 association does little to block the ER retention signals. We find instead that the ER retention signals are blocked by two proteins involved in intracellular trafficking, SAP97 and CASK. We show that SAP97, in the presence of CASK and the receptor complex, assumes an extended conformation. In the extended conformation, SAP97 makes its SH3 and GuK domains available to bind and sterically mask the ER retention signals in the GluK5 C-terminus. SAP97 and CASK are also necessary for sorting receptor cargoes into the local dendritic secretory pathway in neurons. We show that the ER retention signals of GluK5 play a vital role in sorting the receptor complex in the local dendritic secretory pathway in neurons. These data suggest a new role for ER retention signals in trafficking integral membrane proteins in neurons. SIGNIFICANCE: We present evidence that the ER retention signals in the kainate receptors containing GluK5 impose a requirement for sorting into local dendritic secretory pathways in neurons, as opposed to traversing the somatic Golgi apparatus. There are two ER retention signals in the C-terminus of GluK5. We show that both are blocked by physical association with SAP97 and CASK. The SH3 and GuK domains of SAP97, in the presence of CASK, bind directly to each ER retention signal and form a complex. These results support an entirely new function for ER retention signals in the C-termini of neuronal receptors, such as NMDA and kainate receptors, and define a mechanism for selective entry of receptors into local secretory pathways.
Collapse
Affiliation(s)
- Xiaoqi Hong
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91711, United States of America
| | - Okunola Jeyifous
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States of America
| | - Mason Ronilo
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91711, United States of America
| | - John Marshall
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, United States of America
| | - William N Green
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States of America
| | - Steve Standley
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91711, United States of America.
| |
Collapse
|
16
|
Noshiro M, Kawamoto T, Nakashima A, Ozaki N, Ueno T, Saeki M, Honda K, Fujimoto K, Kato Y. Deficiency of the basic helix-loop-helix transcription factor DEC1 prevents obesity induced by a high-fat diet in mice. Genes Cells 2018; 23:658-669. [PMID: 29968353 DOI: 10.1111/gtc.12607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Obesity is a major public health problem in developed countries resulting from increased food intake and decreased energy consumption and usually associated with abnormal lipid metabolism. Here, we show that DEC1, a basic helix-loop-helix transcription factor, plays an important role in the regulation of lipid consumption in mouse brown adipose tissue (BAT), which is the major site of thermogenesis. Homozygous Dec1 deletion attenuated high-fat-diet-induced obesity, adipocyte hypertrophy, fat volume and hepatic steatosis. Furthermore, DEC1 deficiency increased body temperature during daytime and enhanced the expression of uncoupler protein 1, a key factor of thermogenesis, and various lipolysis-related genes in interscapular BAT. In vitro experiments suggested that DEC1 suppresses the expression of various lipolysis-related genes induced by the heterodimer of peroxisome proliferator-activated receptor γ and retinoid X receptor α (RXRα) through direct binding to RXRα. These observations suggest that enhanced lipolysis in BAT caused by DEC1 deficiency leads to an increase in lipid consumption, thereby decreasing lipid accumulation in adipose tissues and the liver. Thus, DEC1 may serve as an energy-saving factor that suppresses lipid consumption, which may be relevant to managing obesity.
Collapse
Affiliation(s)
- Mitsuhide Noshiro
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Kawamoto
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Writing Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Noritsugu Ozaki
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Masayumi Saeki
- Health Examination Center, Chugoku Rousai Hospital, Kure, Japan
| | - Kiyomasa Honda
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsumi Fujimoto
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukio Kato
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Huang Y, Lai X, Hu L, Lei C, Lan X, Zhang C, Ma Y, Zheng L, Bai Y, Lin F, Chen H. Over‐expression of DEC1 inhibits myogenic differentiation by modulating MyoG activity in bovine satellite cell. J Cell Physiol 2018; 233:9365-9374. [DOI: 10.1002/jcp.26471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yongzhen Huang
- Shaanxi Key Laboratory of Molecular Biology for AgricultureCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Xinsheng Lai
- Shaanxi Key Laboratory of Molecular Biology for AgricultureCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
- The Laboratory of Synaptic Development and Plasticity, Institute of Life ScienceNanchang UniversityNanchangChina
- School of Life ScienceNanchang UniversityNanchangChina
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for AgricultureCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for AgricultureCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Chunlei Zhang
- Institute of Cellular and Molecular BiologyJiangsu Normal UniversityXuzhouJiangsuChina
| | - Yun Ma
- College of Life Sciences, Xinyang Normal UniversityInstitute for Conservation and Utilization of Agro‐Bioresources in Dabie MountainsXinyangHenanChina
| | - Li Zheng
- Henan University of Animal Husbandry and EconomyZhengzhouHenanChina
| | - Yue‐Yu Bai
- Animal Health Supervision in Henan ProvinceZhengzhouHenanChina
| | - Fengpeng Lin
- Bureau of Animal Husbandry of Biyang CountyBiyangHenanChina
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for AgricultureCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
18
|
Abstract
The daily rhythm of mammalian energy metabolism is subject to the circadian clock system, which is made up of the molecular clock machinery residing in nearly all cells throughout the body. The clock genes have been revealed not only to form the molecular clock but also to function as a mediator that regulates both circadian and metabolic functions. While the circadian signals generated by clock genes produce metabolic rhythms, clock gene function is tightly coupled to fundamental metabolic processes such as glucose and lipid metabolism. Therefore, defects in the clock genes not only result in the dysregulation of physiological rhythms but also induce metabolic disorders including diabetes and obesity. Among the clock genes, Dec1 (Bhlhe40/Stra13/Sharp2), Dec2 (Bhlhe41/Sharp1), and Bmal1 (Mop3/Arntl) have been shown to be particularly relevant to the regulation of energy metabolism at the cellular, tissue, and organismal levels. This paper reviews our current knowledge of the roles of Dec1, Dec2, and Bmal1 in coordinating the circadian and metabolic pathways.
Collapse
|
19
|
Moon Y, Park B, Park H. Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism. BMB Rep 2017; 49:173-8. [PMID: 26521940 PMCID: PMC4915232 DOI: 10.5483/bmbrep.2016.49.3.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 01/05/2023] Open
Abstract
Liver cells experience hypoxic stress when drug-metabolizing enzymes excessively consume O2 for hydroxylation. Hypoxic stress changes the transcription of several genes by activating a heterodimeric transcription factor called hypoxia-inducible factor- 1α/β (HIF-1α/β). We found that hypoxic stress (0.1% O2) decreased the expression of cytochrome P450 7A1 (CYP7A1), a rate-limiting enzyme involved in bile acid biosynthesis. Chenodeoxycholic acid (CDCA), a major component of bile acids, represses CYP7A1 by activating a transcriptional repressor named small heterodimer partner (SHP). We observed that hypoxia decreased the levels of both CDCA and SHP, suggesting that hypoxia repressed CYP7A1 without inducing SHP. The finding that overexpression of HIF-1α increased the activity of the CYP7A1 promoter suggested that hypoxia decreased the expression of CYP7A1 in a HIF-1-independent manner. Thus, the results of this study suggested that hypoxia decreased the activity of CYP7A1 by limiting its substrate O2, and by decreasing the transcription of CYP7A1. [BMB Reports 2016; 49(3): 173-178].
Collapse
Affiliation(s)
- Yunwon Moon
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Bongju Park
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
20
|
Asanoma K, Liu G, Yamane T, Miyanari Y, Takao T, Yagi H, Ohgami T, Ichinoe A, Sonoda K, Wake N, Kato K. Regulation of the Mechanism of TWIST1 Transcription by BHLHE40 and BHLHE41 in Cancer Cells. Mol Cell Biol 2015; 35:4096-109. [PMID: 26391953 PMCID: PMC4648814 DOI: 10.1128/mcb.00678-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/04/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022] Open
Abstract
BHLHE40 and BHLHE41 (BHLHE40/41) are basic helix-loop-helix type transcription factors that play key roles in multiple cell behaviors. BHLHE40/41 were recently shown to be involved in an epithelial-to-mesenchymal transition (EMT). However, the precise mechanism of EMT control by BHLHE40/41 remains unclear. In the present study, we demonstrated that BHLHE40/41 expression was controlled in a pathological stage-dependent manner in human endometrial cancer (HEC). Our in vitro assays showed that BHLHE40/41 suppressed tumor cell invasion. BHLHE40/41 also suppressed the transcription of the EMT effectors SNAI1, SNAI2, and TWIST1. We identified the critical promoter regions of TWIST1 for its basal transcriptional activity. We elucidated that the transcription factor SP1 was involved in the basal transcriptional activity of TWIST1 and that BHLHE40/41 competed with SP1 for DNA binding to regulate gene transcription. This study is the first to report the detailed functions of BHLHE40 and BHLHE41 in the suppression of EMT effectors in vitro. Our results suggest that BHLHE40/41 suppress tumor cell invasion by inhibiting EMT in tumor cells. We propose that BHLHE40/41 are promising markers to predict the aggressiveness of each HEC case and that molecular targeting strategies involving BHLHE40/41 and SP1 may effectively regulate HEC progression.
Collapse
Affiliation(s)
- Kazuo Asanoma
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ge Liu
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takako Yamane
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoko Miyanari
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoka Takao
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University, Kyoto, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akimasa Ichinoe
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenzo Sonoda
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Wake
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Han Y, Choi YH, Lee SH, Jin YH, Cheong H, Lee KY. Yin Yang 1 is a multi-functional regulator of adipocyte differentiation in 3T3-L1 cells. Mol Cell Endocrinol 2015; 413:217-27. [PMID: 26159900 DOI: 10.1016/j.mce.2015.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/21/2015] [Accepted: 06/29/2015] [Indexed: 01/03/2023]
Abstract
Yin Yang 1 (YY1) is an ubiquitously distributed transcription factor that belongs to the GLI-Kruppel class of zinc finger proteins. The mechanism by which YY1 regulates adipocyte differentiation remains unclear. In this study, we investigated the functional role of YY1 during adipocyte differentiation. During the early stage, YY1 gene and protein expression was transiently downregulated upon the induction of differentiation, however, it was consistently induced during the later stage. YY1 overexpression decreased adipocyte differentiation and blocked cell differentiation at the preadipocyte stage, while YY1 knockdown by RNA interference increased adipocyte differentiation. YY1 physically interacted with PPARγ (Peroxisome proliferator-activated receptor gamma) and C/EBPβ (CCAAT/enhancer-binding protein beta) respectively in 3T3-L1 cells. Through its interaction with PPARγ, YY1 directly decreased PPARγ transcriptional activity. YY1 ectopic expression prevented C/EBPβ from binding to the PPARγ promoter, resulting in the downregulation of PPARγ transcriptional activity. These results indicate that YY1 repressed adipocyte differentiation by repressing the activity of adipogenic transcriptional factors in 3T3-L1 cells.
Collapse
Affiliation(s)
- Younho Han
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - You Hee Choi
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Sung Ho Lee
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Yun-Hye Jin
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Heesun Cheong
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, South Korea.
| | - Kwang Youl Lee
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|
22
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
23
|
Song Z, Cheng J, Yang H, Li Y, Gao Q, Shi X, Yang G. Differentiation of 3T3-L1 preadipocytes is inhibited under a modified ceiling culture. Cell Biol Int 2015; 39:638-45. [PMID: 25572439 DOI: 10.1002/cbin.10428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/26/2014] [Indexed: 12/22/2022]
Abstract
Ceiling culture is an inverted and closed cell culture system which represents a novel method for exploring adipocyte characteristics and function. Although the role of ceiling culture in mature adipocyte dedifferentiation has been extensively studied, its potential effects on preadipocyte differentiation remain unclear. In this study, we established a simplified dish ceiling culture method for 3T3-L1 preadipocytes and showed that our novel ceiling culture method could reproduce the function of the traditional flask ceiling culture. Then, we investigated the effects of ceiling culture on 3T3-L1 preadipocyte differentiation by Oil red O staining and RT-qPCR. The results showed that ceiling culture significantly impaired triglyceride accumulation and adipogenic marker genes expression in 3T3-L1 preadipocytes. These findings suggest that ceiling culture inhibited 3T3-L1 preadipocyte differentiation while inducing mature adipocytes dedifferentiation. Taken together, our data facilitate the understanding of the property of ceiling culture and promote the study of revealing the underlying mechanisms of mature adipocytes dedifferenatiation.
Collapse
Affiliation(s)
- Ziyi Song
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Hu S, Shang W, Yue H, Chen R, Dong Z, Hu J, Mao Z, Yang J. Differentiated embryonic chondrocytes 1 expression of periodontal ligament tissue and gingival tissue in the patients with chronic periodontitis. Arch Oral Biol 2014; 60:517-25. [PMID: 25575296 DOI: 10.1016/j.archoralbio.2014.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/20/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To evaluate the DEC1 expression of periodontal ligament tissue and gingival tissue in the patients with chronic periodontitis. METHODS 20 non-smoking patients with chronic periodontitis and 20 healthy individuals were enrolled. Periodontal ligament tissue and gingival tissue samples from healthy subjects were collected during teeth extraction for orthodontic reason or the third molar extraction. The parallel samples from patients with chronic periodontitis were obtained during periodontal flap operations or teeth extraction as part of periodontal treatment. The DEC1 expression and the alkaline phosphatase (ALP) activity of both the periodontal ligament tissue and gingival tissue were determined by Western blot, Immunohistochemistry and ALP Detection Kit. RESULTS The DEC1 expression of periodontal ligament tissue in the patients with chronic periodontitis decreased significantly along with the decreased ALP activity. On the contrary, the DEC1 expression of gingival tissue in the patients with chronic periodontitis increased significantly. Further study found that the DEC1 expression of gingival tissue increased mainly in the suprabasal layer of gingival epithelial cells but decreased in the gingival connective tissue of the patients with chronic periodontitis. CONCLUSION The DEC1 expression decreases in the periodontal ligament tissue which is related to the osteogenic capacity, whereas the DEC1 expression increases in the suprabasal layer of gingival epithelial cells which are involved in immune inflammatory response in the patients with chronic periodontitis. The findings provide a new target to explore the pathology and the therapy of periodontitis.
Collapse
Affiliation(s)
- Shenlin Hu
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Shang
- Department of Pharmacology, Nanjing Medicine University, Nanjing, China
| | - Haitao Yue
- Department of Pharmacology, Nanjing Medicine University, Nanjing, China
| | - Ruini Chen
- Department of Pharmacology, Nanjing Medicine University, Nanjing, China
| | - Zheng Dong
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jinhua Hu
- Department of Pharmacology, Nanjing Medicine University, Nanjing, China
| | - Zhao Mao
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, China.
| | - Jian Yang
- Department of Pharmacology, Nanjing Medicine University, Nanjing, China.
| |
Collapse
|
25
|
Kuzmochka C, Abdou HS, Haché RJG, Atlas E. Inactivation of histone deacetylase 1 (HDAC1) but not HDAC2 is required for the glucocorticoid-dependent CCAAT/enhancer-binding protein α (C/EBPα) expression and preadipocyte differentiation. Endocrinology 2014; 155:4762-73. [PMID: 25203139 DOI: 10.1210/en.2014-1565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several drugs currently used in the management of mood disorders, epilepsy (ie, valproic acid), or the control of inflammation (ie, corticosteroids) have been shown to promote visceral obesity in humans by increasing the number of newly formed adipocytes. Valproic acid is classified as a nonspecific histone deacetylase (HDAC) inhibitor, along with trichostatin A and butyric acid. In vitro experiments have demonstrated that such molecules greatly enhance the rate of preadipocyte differentiation, similarly to the effect of corticosteroids. The glucocorticoid receptor stimulates adipogenesis in part by enhancing the transcription of C/ebpa through the titration, and subsequent degradation, of HDAC1 from the C/ebpα promoter. There is, however, controversy in the literature as to the role of HDACs during adipogenesis. In this study, we sought to demonstrate, using 2 different strategies, the definite role of HDAC1 in adipogenesis. By using small interference RNA-mediated knockdown of HDAC1 and by generating an enzymatically inactive HDAC1D181A by site-directed mutagenesis, we were able to show that HDAC1, but not HDAC2, suppresses glucocorticoid receptor-potentiated preadipocyte differentiation by decreasing CCAAT/enhancer-binding protein (C/ebp)α and Pparγ expression levels at the onset of differentiation. Finally, we demonstrate that HDAC1D181A acts as a dominant negative mutant of HDAC1 during adipogenesis by modulating C/EBPβ transcriptional activity on the C/ebpα promoter.
Collapse
Affiliation(s)
- Claire Kuzmochka
- Northern Ontario School of Medicine, Ontario, Canada ON POM Reproduction, Mother and Youth Health (H.-S.A.), CHUQ Research Centre, Quebec city, Quebec, Canada G1R2J6; Environmental Health Science and Research Bureau (E.A.), Health Canada, Ottawa, Ontario, Canada M3J1P3; and York University (R.J.G.H.), Toronto, Ontario, Canada K1A0K9
| | | | | | | |
Collapse
|
26
|
Kato Y, Kawamoto T, Fujimoto K, Noshiro M. DEC1/STRA13/SHARP2 and DEC2/SHARP1 coordinate physiological processes, including circadian rhythms in response to environmental stimuli. Curr Top Dev Biol 2014; 110:339-72. [PMID: 25248482 DOI: 10.1016/b978-0-12-405943-6.00010-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Daily physiological and behavioral rhythms are regulated by endogenous circadian molecular clocks. Clock proteins DEC1 (BHLHe40) and DEC2 (BHLHe41) belong to the basic helix-loop-helix protein superfamily, which contains other clock proteins CLOCK and BMAL1. DEC1 and DEC2 are induced by CLOCK:BMAL1 heterodimer via the CACGTG E-box in the promoter and, thereafter, suppress their own expression by competing with CLOCK:BMAL1 for the DNA binding. This negative feedback DEC loop together with the PER loop involving PER and CRY, the other negative clock regulators, maintains the circadian rhythm of Dec1 and Dec2 expression. DEC1 is induced by light pulse and adjusts the circadian phase of the central clock in the suprachiasmatic nucleus, whereas DEC1 upregulation by TGF-β resets the circadian phase of the peripheral clocks in tissues. Furthermore, DEC1 and DEC2 modulate the clock output signals to control circadian rhythms in behavior and metabolism. In addition to the functions in the clocks, DEC1 and DEC2 are involved in hypoxia responses, immunological reactions, and carcinogenesis. These DEC actions are mediated by the direct binding to the E-box elements in target genes or by protein-protein interactions with transcription factors such as HIF-1α, RXRα, MyoD, and STAT. Notably, numerous growth factors, hormones, and cytokines, along with ionizing radiation and DNA-damaging agents, induce Dec1 and/or Dec2 in a tissue-specific manner. These findings suggest that DEC1 and DEC2 play a critical role in animal adaptation to various environmental stimuli.
Collapse
Affiliation(s)
- Yukio Kato
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takeshi Kawamoto
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsumi Fujimoto
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuhide Noshiro
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
27
|
Ow JR, Tan YH, Jin Y, Bahirvani AG, Taneja R. Stra13 and Sharp-1, the Non-Grouchy Regulators of Development and Disease. Curr Top Dev Biol 2014; 110:317-38. [DOI: 10.1016/b978-0-12-405943-6.00009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Lee HY, Choi K, Oh H, Park YK, Park H. HIF-1-dependent induction of Jumonji domain-containing protein (JMJD) 3 under hypoxic conditions. Mol Cells 2014; 37:43-50. [PMID: 24552709 PMCID: PMC3907005 DOI: 10.14348/molcells.2014.2250] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023] Open
Abstract
Jumonji domain-containing proteins (JMJD) catalyze the oxidative demethylation of a methylated lysine residue of histones by using O2, α-ketoglutarate, vitamin C, and Fe(II). Several JMJDs are induced by hypoxic stress to compensate their presumed reduction in catalytic activity under hypoxia. In this study, we showed that an H3K27me3 specific histone demethylase, JMJD3 was induced by hypoxia-inducible factor (HIF)-1α/β under hypoxia and that treatment with Clioquinol, a HIF-1α activator, increased JMJD3 expression even under normoxia. Chromatin immunoprecipitation (ChIP) analyses showed that both HIF-1α and its dimerization partner HIF-1β/Arnt occupied the first intron region of the mouse JMJD3 gene, whereas the HIF-1α/β heterodimer bound to the upstream region of the human JMJD3, indicating that human and mouse JMJD3 have hypoxia-responsive regulatory regions in different locations. This study shows that both mouse and human JMJD3 are induced by HIF-1.
Collapse
Affiliation(s)
- Ho-Youl Lee
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Kang Choi
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Hookeun Oh
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Young-Kwon Park
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| |
Collapse
|
29
|
Lai XS, Zhang CG, Wang J, Wang C, Lan XY, Lei CZ, Chen H. Developmental expression patterns and association study with growth traits of bovine Bhlhe40 gene. Mol Biol 2013. [DOI: 10.1134/s0026893313050105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|