1
|
Samant C, Kale R, Pai KSR, Nandakumar K, Bhonde M. Role of Wnt/β-catenin pathway in cancer drug resistance: Insights into molecular aspects of major solid tumors. Biochem Biophys Res Commun 2024; 729:150348. [PMID: 38986260 DOI: 10.1016/j.bbrc.2024.150348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/β-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/β-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/β-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/β-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/β-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.
Collapse
Affiliation(s)
- Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
2
|
Chen H, Fang S, Zhu X, Liu H. Cancer-associated fibroblasts and prostate cancer stem cells: crosstalk mechanisms and implications for disease progression. Front Cell Dev Biol 2024; 12:1412337. [PMID: 39092186 PMCID: PMC11291335 DOI: 10.3389/fcell.2024.1412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
The functional heterogeneity and ecological niche of prostate cancer stem cells (PCSCs), which are major drivers of prostate cancer development and treatment resistance, have attracted considerable research attention. Cancer-associated fibroblasts (CAFs), which are crucial components of the tumor microenvironment (TME), substantially affect PCSC stemness. Additionally, CAFs promote PCSC growth and survival by releasing signaling molecules and modifying the surrounding environment. Conversely, PCSCs may affect the characteristics and behavior of CAFs by producing various molecules. This crosstalk mechanism is potentially crucial for prostate cancer progression and the development of treatment resistance. Using organoids to model the TME enables an in-depth study of CAF-PCSC interactions, providing a valuable preclinical tool to accurately evaluate potential target genes and design novel treatment strategies for prostate cancer. The objective of this review is to discuss the current research on the multilevel and multitarget regulatory mechanisms underlying CAF-PCSC interactions and crosstalk, aiming to inform therapeutic approaches that address challenges in prostate cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Hao Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Jing H, Wu X, Xiang M, Wang C, Novakovic VA, Shi J. Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:cancers15071957. [PMID: 37046617 PMCID: PMC10093313 DOI: 10.3390/cancers15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02132, USA
| |
Collapse
|
4
|
Sun Y, Jing J, Xu H, Xu L, Hu H, Tang C, Liu S, Wei Q, Duan R, Guo J, Yang L. N-cadherin inhibitor creates a microenvironment that protect TILs from immune checkpoints and Treg cells. J Immunother Cancer 2021; 9:e002138. [PMID: 33692219 PMCID: PMC7949480 DOI: 10.1136/jitc-2020-002138] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Few patients with prostate cancer benefit from current immunotherapies. Therefore, we aimed to explore new strategies to change this paradigm. METHODS Human tissues, cell lines and in vivo experiments were used to determine whether and how N-cadherin impacts the production of programmed death ligand-1 (PD-L1) and indole amine 2,3-dioxygenase (IDO-1) and whether N-cadherin can increase the production of effector (e)Treg cells. Then, we used PC3-bearing humanized non-obese diabetic/severe combined immunodeficiency IL2Rγnull (hNSG) mice with an intravenous injection of human CD34+ hematopoietic stem cells into the tail vein to evaluate whether the N-cadherin antagonist N-Ac-CHAVC-NH2 (designated ADH-1) could improve the therapeutic effect of tumor-infiltrating lymphocyte (TIL)-related treatment. RESULTS N-cadherin dramatically upregulated the expression of PD-L1 and IDO-1 through IFN-γ (interferongamma) signaling and increasing the production of free fatty acids that could promote the generation of eTreg cells. In preclinical experiments, immune reconstitution mediated by TILs slowed tumor growth and extended the survival time; however, this effect disappeared after immune system suppression by PD-L1, IDO-1 and eTreg cells. Furthermore, ADH-1 effectively reduced immunosuppression and enhanced TIL-related therapy. CONCLUSIONS These data show that the N-cadherin antagonist ADH-1 promotes TIL antitumor responses. This important hurdle must be overcome for tumors to respond to immunotherapy.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- Cadherins/antagonists & inhibitors
- Cadherins/metabolism
- Drug Resistance, Neoplasm
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Janus Kinase 1/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Mice, Inbred NOD
- Mice, SCID
- Oligopeptides/pharmacology
- PC-3 Cells
- Peptides, Cyclic/pharmacology
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Yi Sun
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jun Jing
- Department of Rheumatology and Clinical Immunology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Urology, Shanghai Changhai Hospital of Second Military Medical University, Shanghai, China
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Hailiang Hu
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Cai Tang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shengzhuo Liu
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Ruiqi Duan
- Department of Obstetrics and Gynecology/Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital of Sichuan University, Chengdu, China
| | - Ju Guo
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Yang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Lu N, Piao MH, Feng CS, Yuan Y. Isoflurane promotes epithelial-to-mesenchymal transition and metastasis of bladder cancer cells through HIF-1α-β-catenin/Notch1 pathways. Life Sci 2020; 258:118154. [PMID: 32735882 DOI: 10.1016/j.lfs.2020.118154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023]
Abstract
AIMS Epithelial-to-mesenchymal transition (EMT) facilitates cell migration and invasion, and contributes to metastasis in bladder cancer. Within the perioperative period, anesthetic such as isoflurane have been found to affect cancer prognosis. In the study, we reported the tumor-promoting effect of isoflurane in bladder cancer. MATERIALS AND METHODS Human bladder cancer cell lines T24 and BIU-87 were exposed to isoflurane at different concentrations. The immunofluorescent staining of Ki67, Annexin V-FITC/PI staining, Transwell invasion assays and wound-healing assays were performed to assess cell proliferation, apoptosis, invasion and migration. Expressions of EMT markers (E-cadherin, N-cadherin and Vimentin) and metastatic markers (Snail-1, Slug-1 and MMP-2/9) were determined by immunoblotting. Orthotopic tumor models and mice given tail vein injection of T24 cells were developed with or without 4-h exposure to 2% isoflurane. KEY FINDINGS We found isoflurane promoted bladder cancer cell proliferation, invasion and migration but reduce apoptosis in a concentration-dependent manner. In addition, isoflurane was shown to increase HIF-1α and its nuclear accumulation in bladder cancer cells. HIF-1α knockdown inhibited bladder cancer cell proliferation and delayed EMT, which was reversed in the presence of 4-h exposure to 2% isoflurane. Likewise, we found isoflurane modulated β-catenin/Notch1 pathways via HIF-1α. In vivo studies showed that isoflurane exposure accelerated formation of orthotopic bladder tumor and promoted hepatic metastases from carcinoma of the bladder. SIGNIFICANCE Taken together, our study demonstrates that a frequently used anesthetic can exert a protumorigenic effect on bladder cancer. Isoflurane may serve as an important contributory factor to high recurrence following surgery.
Collapse
Affiliation(s)
- Na Lu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China
| | - Mei-Hua Piao
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China
| | - Chun-Sheng Feng
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China
| | - Ye Yuan
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, PR China.
| |
Collapse
|
6
|
Shen T, Li Y, Zhu S, Yu J, Zhang B, Chen X, Zhang Z, Ma Y, Niu Y, Shang Z. YAP1 plays a key role of the conversion of normal fibroblasts into cancer-associated fibroblasts that contribute to prostate cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:36. [PMID: 32066485 PMCID: PMC7027236 DOI: 10.1186/s13046-020-1542-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Background Cancer-associated fibroblasts (CAFs) are an important part of the tumour microenvironment, and their functions are of great concern. This series of experiments aimed to explore how Yes-associated protein 1 (YAP1) regulates the function of stromal cells and how the normal fibroblasts (NFs) convert into CAFs in prostate cancer (PCa). Methods The effects of conditioned media from different fibroblasts on the proliferation and invasion of epithelial cells TrampC1 were examined. We then analysed the interaction between the YAP1/TEAD1 protein complex and SRC, as well as the regulatory function of the downstream cytoskeletal proteins and actins. A transplanted tumour model was used to explore the function of YAP1 in regulating tumour growth through stromal cells. The relationship between the expression of YAP1 in tumour stromal cells and the clinical characteristics of PCa patients was analysed. Results The expression level of YAP1 was significantly upregulated in PCa stromal cells. After the expression level of YAP1 was increased, NF was transformed into CAF, enhancing the proliferation and invasion ability of epithelial cells. The YAP1/TEAD1 protein complex had the capability to influence downstream cytoskeletal proteins by regulating SRC transcription; therefore, it converts NF to CAF, and CAF can significantly promote tumour growth and metastasis. The high expression of YAP1 in the tumour stromal cells suggested a poor tumour stage and prognosis in PCa patients. Conclusion YAP1 can convert NFs into CAFs in the tumour microenvironment of PCa, thus promoting the development and metastasis of PCa. Silencing YAP1 in tumour stromal cells can effectively inhibit tumour growth.
Collapse
Affiliation(s)
- Tianyu Shen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yang Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shimiao Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianpeng Yu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boya Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuanrong Chen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zheng Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuan Ma
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
7
|
Zhu M, Yu X, Zheng Z, Huang J, Yang X, Shi H. Capsaicin suppressed activity of prostate cancer stem cells by inhibition of Wnt/β‐catenin pathway. Phytother Res 2019; 34:817-824. [DOI: 10.1002/ptr.6563] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/22/2019] [Accepted: 11/09/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Mingming Zhu
- Department of Nutrition, the Second School of Clinical MedicineNanjing University of Chinese Medicine Nanjing 210023 China
| | - Xi Yu
- Department of Nutrition, the Second School of Clinical MedicineNanjing University of Chinese Medicine Nanjing 210023 China
| | - Zongmei Zheng
- Department of Nutrition, the Second School of Clinical MedicineNanjing University of Chinese Medicine Nanjing 210023 China
| | - Jiaming Huang
- Department of Nutrition, the Second School of Clinical MedicineNanjing University of Chinese Medicine Nanjing 210023 China
| | - Xuepan Yang
- Department of Nutrition, the Second School of Clinical MedicineNanjing University of Chinese Medicine Nanjing 210023 China
| | - Hongfei Shi
- Department of Nutrition, the Second School of Clinical MedicineNanjing University of Chinese Medicine Nanjing 210023 China
| |
Collapse
|
8
|
Hajizadeh F, Okoye I, Esmaily M, Ghasemi Chaleshtari M, Masjedi A, Azizi G, Irandoust M, Ghalamfarsa G, Jadidi-Niaragh F. Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells. Life Sci 2019; 237:116952. [PMID: 31622608 DOI: 10.1016/j.lfs.2019.116952] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSC) constitute a small area of the tumor mass and are characterized by self-renewal, differentiation and the ability to promote the development of secondary chemo-resistant tumors. Self-renewal of CSCs is regulated through various signaling pathways including Hedgehog, Notch, and Wnt/β-catenin pathways. A few surface markers have been identified, which provide a means of targeting CSCs according to tumor type. Depending on the proximity of CSCs to the tumor hypoxic niche, hypoxia-inducible factors (HIFs) can play a critical role in modulating several CSC-related characteristics. For instance, the upregulation of HIF-1 and HIF-2 at tumor sites, which correlates with the expansion of CSCs and poor cancer prognosis, has been demonstrated. In this review, we will discuss the mechanisms by which hypoxia enhances the development of CSCs in the tumor microenvironment. Targeting HIFs in combination with other common therapeutics is pre-requisite for effective eradication of CSCs.
Collapse
Affiliation(s)
- Farnaz Hajizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Isobel Okoye
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Maryam Esmaily
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Masjedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahzad Irandoust
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Begum A, McMillan RH, Chang YT, Penchev VR, N.V. R, Maitra A, Goggins MG, Eshelman JR, Wolfgang CL, Rasheed ZA, Matsui W. Direct Interactions With Cancer-Associated Fibroblasts Lead to Enhanced Pancreatic Cancer Stem Cell Function. Pancreas 2019; 48:329-334. [PMID: 30747824 PMCID: PMC6411432 DOI: 10.1097/mpa.0000000000001249] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cancer-associated fibroblasts (CAFs) play an important role in the progression of pancreatic ductal adenocarcinoma (PDAC) by promoting tumor cell migration and drug resistance. We determined the impact of CAFs on PDAC cancer stem cells (CSCs). METHODS Fibroblast cell lines from patients' tumors were cocultured with PDAC cells and examined for clonogenic growth and self-renewal using colony-forming assays and migration in vitro. Changes in the frequency of CSCs was determined by flow cytometry. The effect of integrin-focal adhesion kinase (FAK) signaling on CAF-mediated clonogenic growth was evaluated using short hairpin RNAs against β1 integrin and FAK as well as a small-molecule FAK inhibitor. RESULTS Cancer-associated fibroblasts enhanced PDAC clonogenic growth, self-renewal, and migration that was associated with an increase in the frequency of CSCs. These fibroblast cells were activated by PDAC cells and increased collagen synthesis resulting in FAK activation in PDAC cells. Knockdown of β1-integrin and FAK or the inhibition of FAK kinase activity in PDAC cells abrogated the impact of CAFs on clonogenic growth. CONCLUSION Therefore, CAFs enhance PDAC clonogenic growth, self-renewal, and the frequency of CSCs through type I collagen production that enhances integrin-FAK signaling in PDAC cells.
Collapse
Affiliation(s)
- Asma Begum
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ross H. McMillan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yu-Tai Chang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vesselin R. Penchev
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rajeshkumar N.V.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anirban Maitra
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Michael G. Goggins
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James R. Eshelman
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher L. Wolfgang
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zeshaan A. Rasheed
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - William Matsui
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Taddei ML, Cavallini L, Ramazzotti M, Comito G, Pietrovito L, Morandi A, Giannoni E, Raugei G, Chiarugi P. Stromal-induced downregulation of miR-1247 promotes prostate cancer malignancy. J Cell Physiol 2018; 234:8274-8285. [PMID: 30378132 DOI: 10.1002/jcp.27679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
Abstract
Cancer progression is strictly dependent on the relationship between tumor cells and the surrounding stroma, which supports cancer malignancy promoting several crucial steps of tumor progression, including the execution of the epithelial to mesenchymal transition (EMT) associated with enhancement in cell invasion, resistance to both anoikis and chemotherapeutic treatments. Recently it has been highlighted the central role of microRNAs (miRNAs) as regulators of tumor progression. Notably, in several tumors a strong deregulation of miRNAs is observed, supporting proliferation, invasion, and metabolic reprogramming of tumor cells. Here we demonstrated that cancer-associated fibroblasts induce a downregulation of miR-1247 in prostate cancer (PCa) cells. We proved that miR-1247 repression is functional for the achievement of EMT and increased cell invasion as well as stemness traits. These phenomena contribute to promote the metastatic potential of PCa cells as demonstrated by increased lung colonization in in vivo experiments. Moreover, as a consequence of miR-1247 downregulation, we observed a correlated increased expression level of neuropilin-1, a miR-1247 target involved as a coreceptor in the epidermal growth factor receptor signaling. Taken together, our data highlight miR-1247 as a potential target for molecular therapies aimed to block the progression and diffusion of PCa.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Cavallini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Laura Pietrovito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Tuscany Tumor Institute and "Center for Research, Transfer and High Education DenoTHE", Florence, Italy
| |
Collapse
|
11
|
Ruibin J, Guoping C, Zhiguo Z, Maowei N, Danying W, Jianguo F, Linhui G. Establishment and Characterization of a Highly Metastatic Ovarian Cancer Cell Line. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3972534. [PMID: 30046596 PMCID: PMC6036838 DOI: 10.1155/2018/3972534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/03/2018] [Indexed: 12/29/2022]
Abstract
Ovarian cancer leads the worst prognosis among all types of gynecologic malignancies, and patients are often diagnosed at an advanced stage. Ovarian cancer also has a high rate of metastasis; however, the detailed mechanisms for ovarian cancer prone to metastasis remain unclear. In this study, we used continuous in vitro screening of the human ovarian cancer A2780 cell line to establish a cell line (A2780-M) which shows high invasiveness and motility. Compared to the parental cells, A2780-M cells express elevated protein levels of CD44, CD133, CD34, and β-catenin. A2780-M cells are also more resistant to chemotherapeutic agents SN-38 and Docetaxel. Thus, the A2780-M cell line is a new ovarian metastatic cancer cell line that expresses tumor stem cell surface markers and adhesion-related membrane proteins and is with higher motility and invasiveness.
Collapse
Affiliation(s)
- Jiang Ruibin
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Cheng Guoping
- Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, China
| | - Zheng Zhiguo
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Ni Maowei
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, China
| | - Wan Danying
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Feng Jianguo
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, China
| | - Gu Linhui
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
12
|
Luo Y, Li M, Zuo X, Basourakos SP, Zhang J, Zhao J, Han Y, Lin Y, Wang Y, Jiang Y, Lan L. β‑catenin nuclear translocation induced by HIF‑1α overexpression leads to the radioresistance of prostate cancer. Int J Oncol 2018; 52:1827-1840. [PMID: 29658569 PMCID: PMC5919719 DOI: 10.3892/ijo.2018.4368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 03/16/2018] [Indexed: 12/27/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF-1α remain unclear. β-catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF-1α and β-catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4-2B, were grouped as follows: Negative control (no treatment), HIF-1α overexpression group (transfected with HIF-1α overexpression plasmid) and β-catenin silenced group (transfected with HIF-1α plasmids and β-catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4-2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4-2B cells, transfection with HIF-1α overexpression plasmid led to an enhanced β-catenin nuclear translocation, while β-catenin silencing inhibited β-catenin nuclear translocation. The enhanced β-catenin nuclear translocation induced by HIF-1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non-homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF-1α overexpression enhanced β-catenin nuclear translocation, which led to the activation of the β-catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF-1α overexpression promotes the radioresistance of PCa cells.
Collapse
Affiliation(s)
- Yong Luo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Mingchuan Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Xuemei Zuo
- Department of Clinical Laboratory, Tong Ren Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200233, P.R. China
| | - Spyridon P Basourakos
- Department of Genitourinary Medical Oncology, Cancer Medicine, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Jiao Zhang
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yili Han
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yunhua Lin
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yongxing Wang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Ling Lan
- Department of Endocrinology, Beijing Jishuitan Hospital, The 4th Medical College of Peking University, Beijing 100035, P.R. China
| |
Collapse
|
13
|
Chen DW, Wang H, Bao YF, Xie K. Notch signaling molecule is involved in the invasion of MiaPaCa2 cells induced by CoCl2 via regulating epithelial‑mesenchymal transition. Mol Med Rep 2018; 17:4965-4972. [PMID: 29393429 PMCID: PMC5865956 DOI: 10.3892/mmr.2018.8502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
Pancreatic cancer exhibits a high mortality rate resulting from metastasis and there is currently no effective treatment strategy. Hypoxia serves an important role in cancer cells, where cellular metabolic rate is high. The underlying mechanisms that trigger hypoxia and the invasion of pancreatic cancer cells remain unknown. Investigation of the importance of hypoxia in the invasion of pancreatic cancer cells for potential, novel treatment strategies is of primary concern. Cell Counting Kit-8 assay, invasion assay, western blotting and reverse transcription-quantitative polymerase chain reaction were used to investigate invasion and epithelial mesenchymal transition (EMT) and the expression of Notch1 in MiaPaCa2 cells treated with cobalt II chloride (CoCl2). Hypoxia-inducible factor 1α (HIF-1α) small interfering (si)RNA and Notch1 inhibitor N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) were also selected to investigate these mechanisms. Data indicated that CoCl2 increased the invasion ability and altered EMT in MiaPaCa2 cells. CoCl2 regulated the expression of HIF-1α and Notch1 in MiaPaCa2 cells. In addition, HIF-1α siRNA inhibited the effects of CoCl2 on the expression of Notch1 and decreased Snail, EMT and invasion in MiaPaCa2 cells. DAPT increased the expression of epithelial-cadherin and decreased the content of neural-cadherin, Snail and invasion in MiaPaCa2 cells in the presence or absence of CoCl2. CoCl2 promoted invasion by stimulating the expression of HIF-1α and regulating the expression of Notch1 and EMT in MiaPaCa2 cells. Targeting the Notch1 signaling molecule may be a novel treatment strategy for the prevention and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ding-Wei Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Hong Wang
- Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Ya-Fang Bao
- Caihe Street Community Health Service Center, Hangzhou, Zhejiang 310016, P.R. China
| | - Kun Xie
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
14
|
Propofol Reversed Hypoxia-Induced Docetaxel Resistance in Prostate Cancer Cells by Preventing Epithelial-Mesenchymal Transition by Inhibiting Hypoxia-Inducible Factor 1 α. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4174232. [PMID: 29568752 PMCID: PMC5820676 DOI: 10.1155/2018/4174232] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/10/2017] [Accepted: 11/23/2017] [Indexed: 12/27/2022]
Abstract
Prostate cancer is the second most frequently diagnosed cancer worldwide. Hypoxia-induced epithelial–mesenchymal transition (EMT), driven by hypoxia-inducible factor 1α (HIF-1α), is involved in cancer progression and metastasis. The present study was designed to explore the role of propofol in hypoxia-induced resistance of prostate cancer cells to docetaxel. We used the Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine incorporation assay to measure cell viability and cell proliferation, respectively, in prostate cancer cell lines. Then, we detected HIF-1α, E-cadherin, and vimentin expression using western blotting. Propofol reversed the hypoxia-induced docetaxel resistance in the prostate cancer cell lines. Propofol not only decreased hypoxia-induced HIF-1α expression, but also reversed hypoxia-induced EMT by suppressing HIF-1α. Furthermore, small interfering RNA–mediated silencing of HIF-1α reversed the hypoxia-induced docetaxel resistance, although there was little change in docetaxel sensitivity between the hypoxia group and propofol group. The induction of hypoxia did not affect E-cadherin and vimentin expression, and under the siRNA knockdown conditions, the effects of propofol were obviated. These data support a role for propofol in regulating EMT in prostate cancer cells. Taken together, our findings demonstrate that propofol plays an important role in hypoxia-induced docetaxel sensitivity and EMT in prostate cancer cells and that it is a potential drug for overcoming drug resistance in prostate cancer cells via HIF-1α suppression.
Collapse
|
15
|
How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair. Molecules 2017; 22:molecules22111818. [PMID: 29072623 PMCID: PMC6150347 DOI: 10.3390/molecules22111818] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023] Open
Abstract
It is now suggested that the inhibition of biological programs that are associated with the tumor microenvironment may be critical to the diagnostics, prevention and treatment of cancer. On the other hand, a suitable wound microenvironment would accelerate tissue repair and prevent extensive scar formation. In the present review paper, we define key signaling molecules (growth factors, cytokines, chemokines, and galectins) involved in the formation of the tumor microenvironment that decrease overall survival and increase drug resistance in cancer suffering patients. Additional attention will also be given to show whether targeted modulation of these regulators promote tissue regeneration and wound management. Whole-genome transcriptome profiling, in vitro and animal experiments revealed that interleukin 6, interleukin 8, chemokine (C-X-C motif) ligand 1, galectin-1, and selected proteins of the extracellular matrix (e.g., fibronectin) do have similar regulation during wound healing and tumor growth. Published data demonstrate remarkable similarities between the tumor and wound microenvironments. Therefore, tailor made manipulation of cancer stroma can have important therapeutic consequences. Moreover, better understanding of cancer cell-stroma interaction can help to improve wound healing by supporting granulation tissue formation and process of reepithelization of extensive and chronic wounds as well as prevention of hypertrophic scars and formation of keloids.
Collapse
|
16
|
Cai Q, Wang Z, Wang S, Weng M, Zhou D, Li C, Wang J, Chen E, Quan Z. Long non-coding RNA LINC00152 promotes gallbladder cancer metastasis and epithelial-mesenchymal transition by regulating HIF-1α via miR-138. Open Biol 2017; 7:160247. [PMID: 28077595 PMCID: PMC5303272 DOI: 10.1098/rsob.160247] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNA LINC00152 had been reported as an oncogene in gastric and hepatocellular cancer. In this study, we show that LINC00152 is overexpressed in gallbladder cancer (GBC) tissue samples and cell lines. The high LINC00152 levels correlated negatively with the overall survival time in GBC patients. Functionally, LINC00152 dramatically promoted cell migration, invasion and epithelial-mesenchymal transition (EMT) progression in vitro. In vivo, LINC00152 overexpression significantly promoted tumour peritoneal spreading and metastasis. Mechanistic analyses indicated that LINC00152 functions as a molecular sponge for miR-138, which directly suppresses the expression of hypoxia inducible factor-1α (HIF-1α). We revealed that miR-138 is a suppressor of GBC cell metastasis and EMT progression, and a similar phenomenon was observed in HIF-1α knockdown NOZ cells. Through binding to miR-138, LINC00152 has an oncogenic effect on GBC. Overall, our study suggested that the LINC00152/miR-138/HIF-1α pathway potentiates the progression of GBC, and LINC00152 may be a novel therapeutic target.
Collapse
Affiliation(s)
- Qiang Cai
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Zhenqiang Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Shouhua Wang
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Mingzhe Weng
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Di Zhou
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Chen Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jiandong Wang
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhiwei Quan
- Department of General Surgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, People's Republic of China
| |
Collapse
|
17
|
Long H, Xiang T, Qi W, Huang J, Chen J, He L, Liang Z, Guo B, Li Y, Xie R, Zhu B. CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition. Oncotarget 2016; 6:5846-59. [PMID: 25788271 PMCID: PMC4467406 DOI: 10.18632/oncotarget.3462] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/20/2015] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs, also called cancer stem-like cells, CSLCs) can function as "seed cells" for tumor recurrence and metastasis. Here, we report that, in the presence of CD133+ ovarian CSLCs, CD133- non-CSLCs can undergo an epithelial-mesenchymal transition (EMT)-like process and display enhanced metastatic capacity in vitro and in vivo. Highly elevated expression of chemokine (C-C motif) ligand 5 (CCL5) and its receptors chemokine (C-C motif) receptor (CCR) 1/3/5 are observed in clinical and murine metastatic tumor tissues from epithelial ovarian carcinomas. Mechanistically, paracrine CCL5 from ovarian CSLCs activates the NF-κB signaling pathway in ovarian non-CSLCs via binding CCR1/3/5, thereby inducing EMT and tumor invasion. Taken together, our results redefine the metastatic potential of non-stem cancer cells and provide evidence that targeting the CCL5:CCR1/3/5-NF-κB pathway could be an effective strategy to prevent ovarian cancer metastasis.
Collapse
Affiliation(s)
- Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tong Xiang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wei Qi
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiani Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Junying Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Luhang He
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bo Guo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rongkai Xie
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Bryan RT. Cell adhesion and urothelial bladder cancer: the role of cadherin switching and related phenomena. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140042. [PMID: 25533099 DOI: 10.1098/rstb.2014.0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cadherins are mediators of cell-cell adhesion in epithelial tissues. E-cadherin is a known tumour suppressor and plays a central role in suppressing the invasive phenotype of cancer cells. However, the abnormal expression of N- and P-cadherin ('cadherin switching', CS) has been shown to promote a more invasive and m̀alignant phenotype of cancer, with P-cadherin possibly acting as a key mediator of invasion and metastasis in bladder cancer. Cadherins are also implicated in numerous signalling events related to embryonic development, tissue morphogenesis and homeostasis. It is these wide ranging effects and the serious implications of CS that make the cadherin cell adhesion molecules and their related pathways strong candidate targets for the inhibition of cancer progression, including bladder cancer. This review focuses on CS in the context of bladder cancer and in particular the switch to P-cadherin expression, and discusses other related molecules and phenomena, including EpCAM and the development of the cancer stem cell phenotype.
Collapse
Affiliation(s)
- Richard T Bryan
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Cammarata PR, Neelam S, Brooks MM. Inhibition of hypoxia inducible factor-1α downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells. Mol Vis 2015; 21:1024-35. [PMID: 26392741 PMCID: PMC4556159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/31/2015] [Indexed: 12/04/2022] Open
Abstract
PURPOSE The purpose of this study was to identify potential therapeutic strategies to slow down or prevent the expression of early-onset epithelial to mesenchymal transition (EMT) marker proteins (fibronectin and alpha smooth muscle actin, α-SMA) without sacrificing the synthesis and accumulation of the prosurvival protein vascular endothelial growth factor (VEGF) in cultured virally transformed human lens epithelial (HLE) cells. METHODS HLE-B3 cells, maintained in a continuous hypoxic environment (1% oxygen), were treated with SB216763, a specific inhibitor of glycogen synthase kinase-3β (GSK-3β) catalytic activity. Western blot analysis was employed to detect the cytoplasmic and nuclear levels of β-catenin, as well as the total lysate content of fibronectin and α-SMA. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of VEGF in cell culture medium. A hypoxia-inducible factor-1α (HIF-1α) translation inhibitor and an HIF-2α translation inhibitor were independently employed to evaluate the effect of hypoxia inducible factor inhibition on EMT marker protein and VEGF expression. XAV932 was used to assess the suppression of nuclear β-catenin and its downstream effect on EMT marker proteins and VEGF expression. RESULTS SB216763-treated HLE-B3 cells caused marked inhibition of GSK-3β activity prompting a significant increase in the translocation of cytoplasmic β-catenin to the nucleus. The enhancement of nuclear β-catenin looked as if it positively correlated with a significant increase in the basal expression of VEGF as well as increased expression of fibronectin and α-SMA. In conjunction with SB216763, coadministration of an HIF-1α translation inhibitor, but not an HIF-2α translation inhibitor, markedly suppressed the expression of fibronectin and α-SMA without affecting VEGF levels. Treatment with XAV932 significantly reduced the level of nuclear β-catenin, but the levels of neither the EMT marker proteins nor VEGF were changed. CONCLUSIONS Recently, we reported that nuclear β-catenin, but not HIF-2α, regulates the expression of fibronectin and α-SMA in atmospheric oxygen. In marked contrast, data from the hypoxic condition clearly establish that nuclear β-catenin plays little apparent role in the expression of EMT marker proteins. Instead, the loss of HIF-1α (but not HIF-2α) decreases the expression of the EMT marker proteins without sacrificing the levels of the prosurvival protein VEGF. These findings support the development of a potentially relevant therapeutic strategy to undermine the progression of normal cells to the mesenchymal phenotype in the naturally hypoxic lens without subverting cell viability.
Collapse
|
20
|
Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res Treat 2015; 153:323-35. [PMID: 26285644 DOI: 10.1007/s10549-015-3550-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
Adipocytes are known to be involved in epithelial-mesenchymal transition (EMT) in several cancers. However, the role of adipocytes in the EMT of breast cancer cells is poorly understood. The purpose of this study was to investigate the involvement of adipocytes in the EMT in breast cancer. Breast cancer cell lines MCF-7, MDA-MB-453, MDA-MB-435S, MDA-MB-231, and MDA-MB-468 were co-cultured with adipocytes and analyzed for morphological changes, proliferation activity, EMT markers, migration, and invasion. In addition, 296 human breast cancer specimens were classified according to the presence of the fibrous or adipose stroma and analyzed by immunohistochemistry for the expression of estrogen and progesterone receptors, human epidermal growth factor receptor 2, antigen Ki-67, N-cadherin, Twist-related protein 1 (TWIST1), high-mobility group AT-hook 2, TGFβ, and S100 calcium-binding protein A4 using tissue microarray. After co-culture with adipocytes, MCF-7, MDA-MB-435S, and MDA-MB-231 cells exhibited elongated spindle-like morphology and increased proliferation; MDA-MB-435S and MDA-MB-231 cells also showed increased dispersion. In all tested breast cancer cells, adipocytes induced migration and invasion. The EMT-like phenotypic changes and increased cell migration and invasion were accompanied by the upregulation of matrix metallopeptidase 9 and TWIST1. Consistently, breast cancer tumors with the adipose stroma showed higher TWIST1 expression than those with the adipose stroma; however, no difference was observed in the levels of other EMT-related proteins. Adipocytes stimulate breast cancer cells to acquire aggressive tumor phenotype by inducing EMT-associated traits, and breast cancer with the adipose stroma expresses EMT markers as breast cancer with the fibrous stroma.
Collapse
|
21
|
Hu CD, Choo R, Huang J. Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol 2015; 5:90. [PMID: 25927031 PMCID: PMC4396194 DOI: 10.3389/fonc.2015.00090] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
Neuroendocrine differentiation (NED) in prostate cancer is a well-recognized phenotypic change by which prostate cancer cells transdifferentiate into neuroendocrine-like (NE-like) cells. NE-like cells lack the expression of androgen receptor and prostate specific antigen, and are resistant to treatments. In addition, NE-like cells secrete peptide hormones and growth factors to support the growth of surrounding tumor cells in a paracrine manner. Accumulated evidence has suggested that NED is associated with disease progression and poor prognosis. The importance of NED in prostate cancer progression and therapeutic response is further supported by the fact that therapeutic agents, including androgen-deprivation therapy, chemotherapeutic agents, and radiotherapy, also induce NED. We will review the work supporting the overall hypothesis that therapy-induced NED is a mechanism of resistance to treatments, as well as discuss the relationship between therapy-induced NED and therapy-induced senescence, epithelial-to-mesenchymal transition, and cancer stem cells. Furthermore, we will use radiation-induced NED as a model to explore several NED-based targeting strategies for development of novel therapeutics. Finally, we propose future studies that will specifically address therapy-induced NED in the hope that a better treatment regimen for prostate cancer can be developed.
Collapse
Affiliation(s)
- Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research, Purdue University , West Lafayette, IN , USA
| | - Richard Choo
- Department of Radiation Oncology, Mayo Clinic , Rochester, MN , USA
| | - Jiaoti Huang
- Department of Pathology, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| |
Collapse
|
22
|
Montico F, Kido LA, Hetzl AC, Cagnon VHA. Prostatic angiogenic responses in late life: antiangiogenic therapy influences and relation with the glandular microenvironment in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Prostate 2015; 75:484-99. [PMID: 25521760 DOI: 10.1002/pros.22934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/23/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Aging is considered one of the main predisposing factors for the development of prostate malignancies. Angiogenesis is fundamental for tumor growth and its inhibition represents a promising therapeutic approach in cancer treatment. Thus, we sought to determine angiogenic responses and the effects of antiangiogenic therapy in the mouse prostate during late life, comparing these findings with the prostatic microenvironment in the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model. METHODS Male mice (52 week-old FVB) were submitted to treatments with SU5416 (6 mg/kg; i.p.) and/or TNP-470 (15 mg/kg; s.c.). Finasteride was administered (20 mg/kg; s.c.), alone or in association to both inhibitors. The dorsolateral prostate was collected for VEGF, HIF-1α, FGF-2 and endostatin immunohistochemical and Western Blotting analyses and for microvessel density (MVD) count. RESULTS Senescence led to increased MVD and VEGF, HIF-1α and FGF-2 protein levels in the prostatic microenvironment, similarly to what was observed in TRAMP mice prostate. The angiogenic process was impaired in all the treated groups, demonstrating significantly decreased MVD. Antiangiogenic and/or finasteride treatments resulted in decreased VEGF and HIF-1α levels, especially following TNP-470 administration, either alone or associated to SU5416. The combination of these agents resulted in increased endostatin levels, regardless of the presence of finasteride. CONCLUSIONS Prostatic angiogenesis stimulation during senescence favored the development of neoplastic lesions, considering the pro-angiogenic microenvironment as a common aspect also observed during cancer progression in TRAMP mice. The combined antiangiogenic therapy was more efficient, leading to enhanced imbalance towards angiogenic inhibition in the organ. Finally, finasteride administration might secondarily upregulate the expression of pro-angiogenic factors, pointing to the harmful effects of this therapy.
Collapse
Affiliation(s)
- Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | | | |
Collapse
|
23
|
Bao CH, Wang XT, Ma W, Wang NN, Un Nesa E, Wang JB, Wang C, Jia YB, Wang K, Tian H, Cheng YF. Irradiated fibroblasts promote epithelial-mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma. Biochem Biophys Res Commun 2015; 458:441-7. [PMID: 25677618 DOI: 10.1016/j.bbrc.2015.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/01/2015] [Indexed: 12/31/2022]
Abstract
Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial-mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiated fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC.
Collapse
Affiliation(s)
- Ci-Hang Bao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xin-Tong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Wei Ma
- Department of Radiation Oncology, Cancer Hospital, Genaral Hospital of Ningxia Medical University, Yinchuan 750000, China
| | - Na-Na Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Effat Un Nesa
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jian-Bo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yi-Bin Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Kai Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu-Feng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
24
|
Seok JK, Lee SH, Kim MJ, Lee YM. MicroRNA-382 induced by HIF-1α is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res 2014; 42:8062-72. [PMID: 24914051 PMCID: PMC4081109 DOI: 10.1093/nar/gku515] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have revealed that microRNAs (miRs) play important roles in the regulation of angiogenesis. In this study, we have characterized miR-382 upregulation by hypoxia and the functional relevance of miR-382 in tumor angiogenesis. miRs induced by hypoxia in MKN1 human gastric cancer cells were investigated using miRNA microarrays. We selected miR-382 and found that the expression of miR-382 was regulated by HIF-1α. Conditioned media (CM) from MKN1 cells transfected with a miR-382 inhibitor (antagomiR-382) under hypoxic conditions significantly decreased vascular endothelial cell (EC) proliferation, migration and tube formation. Algorithmic programs (Target Scan, miRanda and cbio) predicted that phosphatase and tensin homolog (PTEN) is a target gene of miR-382. Deletion of miR382-binding sequences in the PTEN mRNA 3′-untranslated region (UTR) diminished the luciferase reporter activity. Subsequent study showed that the overexpression of miR-382 or antagomiR-382 down- or upregulated PTEN and its downstream target AKT/mTOR signaling pathway, indicating that PTEN is a functional target gene of miR-382. In addition, PTEN inhibited miR-382-induced in vitro and in vivo angiogenesis as well as VEGF secretion, and the inhibition of miR-382 expression reduced xenograft tumor growth and microvessel density in tumors. Taken together, these results suggest that miR-382 induced by hypoxia promotes angiogenesis and acts as an angiogenic oncogene by repressing PTEN.
Collapse
Affiliation(s)
- Jin-Kyung Seok
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea School of Life Sciences and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Sun Hee Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - Min Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea School of Life Sciences and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | - You-Mie Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea School of Life Sciences and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| |
Collapse
|
25
|
Fu P, Du F, Chen W, Yao M, Lv K, Liu Y. Tanshinone IIA blocks epithelial-mesenchymal transition through HIF-1α downregulation, reversing hypoxia-induced chemotherapy resistance in breast cancer cell lines. Oncol Rep 2014; 31:2561-8. [PMID: 24737252 DOI: 10.3892/or.2014.3140] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/19/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of tanshinone IIA (Tan IIA), an active constituent of Salvia miltiorrhiza Bunge, on epithelial-mesenchymal transition (EMT) and hypoxia-induced chemoresistance in breast cancer cells. To induce hypoxia, MCF-7 and HCC1973 cells were treated with 100 µM deferoxamine followed by doxorubicin (DOX). Cell viability and proliferation were examined using the CCK-8 and EdU assays, respectively. Western blot and immunofluorescence analyses of the expression of two EMT markers, E-cadherin and vimentin, were also carried out. The role of HIF-1α and TWIST in mediating the effects of Tan IIA was determined through siRNA. Based on the results, hypoxia-induced DOX resistance was observed in both MCF-7 and HCC1973 cells (both P=0.001), which was reversed with Tan IIA. Specifically, in hypoxic conditions, Tan IIA significantly decreased cell viability and proliferation (all P≤0.001), but not apoptosis. Hypoxia also significantly reduced E-cadherin and increased vimentin protein levels (P≤0.005), which returned to control levels with Tan IIA. In addition, silencing both HIF-1α and TWIST expression abrogated the effects of Tan IIA on cell viability. Taken together, Tan IIA ameliorated hypoxia-induced DOX resistance and EMT in breast cancer cell lines, which may be attributed to the downregulation of HIF-1α expression. Further in vivo studies, however, are required to fully elucidate the therapeutic potential of Tan IIA in increasing the sensitivity of breast cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Peifen Fu
- Department of Breast Surgery Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Feiya Du
- Department of Breast Surgery Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Minya Yao
- Department of Breast Surgery Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Kezhen Lv
- Department of Breast Surgery Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yu Liu
- Department of Breast Surgery Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
26
|
Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 2014; 4:62. [PMID: 24734219 PMCID: PMC3973916 DOI: 10.3389/fonc.2014.00062] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/14/2014] [Indexed: 01/02/2023] Open
Abstract
Tumor- or cancer-associated fibroblasts (CAFs) are one of the most abundant stromal cell types in different carcinomas and comprise a heterogeneous cell population. Classically, CAFs are assigned with pro-tumorigenic effects stimulating tumor growth and progression. More recent studies demonstrated also tumor-inhibitory effects of CAFs suggesting that tumor-residing fibroblasts exhibit a similar degree of plasticity as other stromal cell types. Reciprocal interactions with the tumor milieu and different sources of origin are emerging as two important factors underlying CAF heterogeneity. This review highlights recent advances in our understanding of CAF biology and proposes to expand the term of cellular “polarization,” previously introduced to describe different activation states of various immune cells, onto CAFs to reflect their phenotypic diversity.
Collapse
Affiliation(s)
- Martin Augsten
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|