1
|
Zannoni A, Pelliciari S, Musiani F, Chiappori F, Roncarati D, Scarlato V. Definition of the Binding Architecture to a Target Promoter of HP1043, the Essential Master Regulator of Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22157848. [PMID: 34360614 PMCID: PMC8345958 DOI: 10.3390/ijms22157848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
HP1043 is an essential orphan response regulator of Helicobacter pylori orchestrating multiple crucial cellular processes. Classified as a member of the OmpR/PhoB family of two-component systems, HP1043 exhibits a highly degenerate receiver domain and evolved to function independently of phosphorylation. Here, we investigated the HP1043 binding mode to a target sequence in the hp1227 promoter (Php1227). Scanning mutagenesis of HP1043 DNA-binding domain and consensus sequence led to the identification of residues relevant for the interaction of the protein with a target DNA. These determinants were used as restraints to guide a data-driven protein-DNA docking. Results suggested that, differently from most other response regulators of the same family, HP1043 binds in a head-to-head conformation to the Php1227 target promoter. HP1043 interacts with DNA largely through charged residues and contacts with both major and minor grooves of the DNA are required for a stable binding. Computational alanine scanning on molecular dynamics trajectory was performed to corroborate our findings. Additionally, in vitro transcription assays confirmed that HP1043 positively stimulates the activity of RNA polymerase.
Collapse
Affiliation(s)
- Annamaria Zannoni
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
| | - Simone Pelliciari
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
| | - Federica Chiappori
- Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche (ITB-CNR), 20054 Segrate, Italy;
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
- Correspondence: (D.R.); (V.S.)
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
- Correspondence: (D.R.); (V.S.)
| |
Collapse
|
2
|
Hung YL, Jiang I, Lee YZ, Wen CK, Sue SC. NMR Study Reveals the Receiver Domain of Arabidopsis ETHYLENE RESPONSE1 Ethylene Receptor as an Atypical Type Response Regulator. PLoS One 2016; 11:e0160598. [PMID: 27486797 PMCID: PMC4972365 DOI: 10.1371/journal.pone.0160598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/21/2016] [Indexed: 11/26/2022] Open
Abstract
The gaseous plant hormone ethylene, recognized by plant ethylene receptors, plays a pivotal role in various aspects of plant growth and development. ETHYLENE RESPONSE1 (ETR1) is an ethylene receptor isolated from Arabidopsis and has a structure characteristic of prokaryotic two-component histidine kinase (HK) and receiver domain (RD), where the RD structurally resembles bacteria response regulators (RRs). The ETR1 HK domain has autophosphorylation activity, and little is known if the HK can transfer the phosphoryl group to the RD for receptor signaling. Unveiling the correlation of the receptor structure and phosphorylation status would advance the studies towards the underlying mechanisms of ETR1 receptor signaling. In this study, using the nuclear magnetic resonance technique, our data suggested that the ETR1-RD is monomeric in solution and the rigid structure of the RD prevents the conserved aspartate residue phosphorylation. Comparing the backbone dynamics with other RRs, we propose that backbone flexibility is critical to the RR phosphorylation. Besides the limited flexibility, ETR1-RD has a unique γ loop conformation of opposite orientation, which makes ETR1-RD unfavorable for phosphorylation. These two features explain why ETR1-RD cannot be phosphorylated and is classified as an atypical type RR. As a control, phosphorylation of the ETR1-RD was also impaired when the sequence was swapped to the fragment of the bacterial typical type RR, CheY. Here, we suggest a molecule insight that the ETR1-RD already exists as an active formation and executes its function through binding with the downstream factors without phosphorylation.
Collapse
Affiliation(s)
- Yi-Lin Hung
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Instrumentation Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Ingjye Jiang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
3
|
Lee KY, Lee BJ. Solution NMR studies on Helicobacter pylori proteins for antibiotic target discovery. Expert Opin Drug Discov 2016; 11:681-93. [PMID: 27216839 DOI: 10.1080/17460441.2016.1189411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) is a well-known widespread pathogenic bacterium that survives in the extremely acidic conditions of the human gastric mucosa. The global prevalence of H. pylori-resistant antibiotics has become an emerging issue in the 21st century and has necessitated the development of novel antibiotic drugs. Many efforts have aimed to discover antibiotic target proteins of H. pylori based on its genome of more than 1600 genes. AREAS COVERED This article highlights NMR spectroscopy as a valuable tool for determining the structure and dynamics of potential antibiotic-targeted proteins of H. pylori and evaluating their modes of interaction with native or synthetic binding partners. The residue-specific information on binding in solution provides a structural basis to identify and optimize lead compounds. EXPERT OPINION NMR spectroscopy is a powerful method for obtaining details of biomolecular interactions with a broad range of binding affinities. This strength facilitates the identification of the binding interface of the encounter complex that plays an integral role in a variety of biological functions. This low-affinity complex is difficult to crystallize, which impedes structure determination using X-ray crystallography. Additionally, the relative binding affinities can be predicted from the type of spectral change upon binding. High-resolution NMR spectroscopy in combination with advanced computer simulation would provide more confidence in complex structures. The application of NMR to studies of the H. pylori protein could contribute to the development of these targeted novel antibiotics.
Collapse
Affiliation(s)
- Ki-Young Lee
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul , Korea
| | - Bong-Jin Lee
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul , Korea
| |
Collapse
|
4
|
Ahmad A, Cai Y, Chen X, Shuai J, Han A. Conformational Dynamics of Response Regulator RegX3 from Mycobacterium tuberculosis. PLoS One 2015. [PMID: 26201027 PMCID: PMC4511772 DOI: 10.1371/journal.pone.0133389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Two-component signal transduction systems (TCS) are vital for adaptive responses to various environmental stresses in bacteria, fungi and even plants. A TCS typically comprises of a sensor histidine kinase (SK) with its cognate response regulator (RR), which often has two domains—N terminal receiver domain (RD) and C terminal effector domain (ED). The histidine kinase phosphorylates the RD to activate the ED by promoting dimerization. However, despite significant progress on structural studies, how RR transmits activation signal from RD to ED remains elusive. Here we analyzed active to inactive transition process of OmpR/PhoB family using an active conformation of RegX3 from Mycobacterium tuberculosis as a model system by computational approaches. An inactive state of RegX3 generated from 150 ns molecular dynamic simulation has rotameric conformations of Thr79 and Tyr98 that are generally conserved in inactive RRs. Arg81 in loop β4α4 acts synergistically with loop β1α1 to change its interaction partners during active to inactive transition, potentially leading to the N-terminal movement of RegX3 helix α1. Global conformational dynamics of RegX3 is mainly dependent on α4β5 region, in particular seven ‘hot-spot’ residues (Tyr98 to Ser104), adjacent to which several coevolved residues at dimeric interface, including Ile76-Asp96, Asp97-Arg111 and Glu24-Arg113 pairs, are critical for signal transduction. Taken together, our computational analyses suggest a molecular linkage between Asp phosphorylation, proximal loops and α4β5α5 dimeric interface during RR active to inactive state transition, which is not often evidently defined from static crystal structures.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Yongfei Cai
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Xingqiang Chen
- Department of Physics, Xiamen University, Siming, Xiamen, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Siming, Xiamen, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| |
Collapse
|
5
|
Moon S, Shin J, Lee D, Seong RH, Lee W. 1H, 15N, and 13C resonance assignments and secondary structure of the SWIRM domain of human BAF155, a chromatin remodeling complex component. Mol Cells 2013; 36:333-9. [PMID: 23996527 PMCID: PMC3887986 DOI: 10.1007/s10059-013-0119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022] Open
Abstract
Mammalian SWI/SNF complexes are evolutionary conserved, ATP-dependent chromatin remodeling units. BAF155 in the SWI/SNF complex contains several highly conserved domains, including SANT, SWIRM, and leucine zipper domains. The biological roles of the SWIRM domain remain unclear; however, both structural and biochemical analyses of this domain have suggested that it could mediate protein-protein or protein-DNA interactions during the chromatin remodeling process. The human BAF155 SWIRM domain was cloned into the Escherichia coli expression vector pMAL-c2X and purified using affinity chromatography for structural analysis. We report the backbone (1)H, (15)N, and (13)C resonance assignments and secondary structure of this domain using nuclear magnetic resonance (NMR) spectroscopy and the TALOS+ program. The secondary structure consists of five α-helices that form a typical histone fold for DNA interactions. Our data suggest that the BAF155 SWIRM domain interacts with nucleosome DNA (Kd = 0.47 μM).
Collapse
Affiliation(s)
- Sunjin Moon
- Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-740, Korea
| | - Joon Shin
- Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-740, Korea
| | - Dongju Lee
- Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-740, Korea
| | | | - Weontae Lee
- Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-740, Korea
| |
Collapse
|