1
|
Jianing W, Jingyi X, Pingting Y. Neuropsychiatric lupus erythematosus: Focusing on autoantibodies. J Autoimmun 2022; 132:102892. [PMID: 36030137 DOI: 10.1016/j.jaut.2022.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) frequently suffer from nervous system complications, termed neuropsychiatric lupus erythematosus (NPLE). NPLE accounts for the poor prognosis of SLE. Correct attribution of NP events to SLE is the primary principle in managing NPLE. The vascular injuries and neuroinflammation are the fundamental neuropathologic changes in NPLE. Specific autoantibody-mediated central nerve system (CNS) damages distinguish NPLE from other CNS disorders. Though the central antibodies in NPLE are generally thought to be raised from the periphery immune system, they may be produced in the meninges and choroid plexus. On this basis, abnormal activation of microglia and disease-associated microglia (DAM) should be the common mechanisms of NPLE and other CNS disturbances. Improved understanding of both characteristic and sharing features of NPLE might yield further options for managing this disease.
Collapse
Affiliation(s)
- Wang Jianing
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xu Jingyi
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yang Pingting
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
2
|
Makinde HM, Winter DR, Procissi D, Mike EV, Stock AD, Kando MJ, Gadhvi GT, Droho S, Bloomfield CL, Dominguez ST, Mayr MG, Lavine JA, Putterman C, Cuda CM. A Novel Microglia-Specific Transcriptional Signature Correlates With Behavioral Deficits in Neuropsychiatric Lupus. Front Immunol 2020; 11:230. [PMID: 32174913 PMCID: PMC7055359 DOI: 10.3389/fimmu.2020.00230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) affect over one-half of SLE patients, yet underlying mechanisms remain largely unknown. We demonstrate that SLE-prone mice (CReCOM) develop NP-SLE, including behavioral deficits prior to systemic autoimmunity, reduced brain volumes, decreased vascular integrity, and brain-infiltrating leukocytes. NP-SLE microglia exhibit numerical expansion, increased synaptic uptake, and a more metabolically active phenotype. Microglia from multiple SLE-prone models express a "NP-SLE signature" unrelated to type I interferon. Rather, the signature is associated with lipid metabolism, scavenger receptor activity and downregulation of inflammatory and chemotaxis processes, suggesting a more regulatory, anti-inflammatory profile. NP-SLE microglia also express genes associated with disease-associated microglia (DAM), a subset of microglia thought to be instrumental in neurodegenerative diseases. Further, expression of "NP-SLE" and "DAM" signatures correlate with the severity of behavioral deficits in young SLE-prone mice prior to overt systemic disease. Our data are the first to demonstrate the predictive value of our newly identified microglia-specific "NP-SLE" and "DAM" signatures as a surrogate for NP-SLE clinical outcomes and suggests that microglia-intrinsic defects precede contributions from systemic SLE for neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Hadijat M Makinde
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Deborah R Winter
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniele Procissi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Elise V Mike
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Ariel D Stock
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Mary J Kando
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gaurav T Gadhvi
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Christina L Bloomfield
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Salina T Dominguez
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Maximilian G Mayr
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Chaim Putterman
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States.,Research Division, Azrieli Faculty of Medicine and Galilee Medical Center, Nahariya, Israel
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
3
|
Lushington GH, Barnes AC. Protein Glycation: An Old Villain is Shedding Secrets. Comb Chem High Throughput Screen 2019; 22:362-369. [DOI: 10.2174/1386207322666190704094356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/02/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
:
The glycation of proteins is non-physiological post-translational incorporation of
carbohydrates onto the free amines or guanidines of proteins and some lipids. Although the
existence of glycated proteins has been known for forty years, a full understanding of their
pathogenic nature has been slow in accruing. In recent years, however, glycation has gained widespread
acceptance as a contributing factor in numerous metabolic, autoimmune, and neurological
disorders, tying together several confounding aspects of disease etiology. From diabetes, arthritis,
and lupus, to multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s, and Parkinson’s
diseases, an emerging glycation/inflammation paradigm now offers significant new insight into a
physiologically important toxicological phenomenon. It exposes novel drug targets and treatment
options, and may even lay foundations for long-awaited breakthroughs.
:
This ‘current frontier’ article briefly profiles current knowledge regarding the underlying causes
of glycation, the structural biology implications of such modifications, and their pathological
consequences. Although several emerging therapeutic strategies for addressing glycation
pathologies are introduced, the primary purpose of this mini-review is to raise awareness of the
challenges and opportunities inherent in this emerging new medicinal target area.
Collapse
|
4
|
Rayes HA, Tani C, Kwan A, Marzouk S, Colosimo K, Medina-Rosas J, Mustafa A, Su J, Lambiris P, Mosca M, Touma Z. What is the prevalence of cognitive impairment in lupus and which instruments are used to measure it? A systematic review and meta-analysis. Semin Arthritis Rheum 2018; 48:240-255. [DOI: 10.1016/j.semarthrit.2018.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/10/2018] [Accepted: 02/16/2018] [Indexed: 11/30/2022]
|
5
|
Dias-Santos A, Proença RP, Tavares Ferreira J, Pinheiro S, Cunha JP, Proença R, Moraes-Fontes MF. The role of ophthalmic imaging in central nervous system degeneration in systemic lupus erythematosus. Autoimmun Rev 2018; 17:617-624. [PMID: 29635076 DOI: 10.1016/j.autrev.2018.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune connective tissue disorder that can involve any organ system. Central nervous system involvement can be a severe life threatening complication, ultimately resulting in severe neurodegenerative changes. Magnetic resonance imaging suggests that neurodegeneration, which may have deleterious effects on brain function, may occur early in SLE and experimental models suggest that neuroprotection may be feasible and beneficial. The retina is an extension of the brain. Recent ophthalmic imaging technologies are capable of identifying early changes in retinal and choroidal morphology and circulation that may reflect CNS degeneration. However, their utility in monitoring CNS involvement in SLE has been poorly studied as these have only been performed in small cohorts, in a cross-sectional design, non-quantitatively and without correlation to disease activity. The authors aim to review the current understanding of neurodegeneration associated with SLE, with particular focus on the visual pathway. We describe the neuropathology of the visual system in SLE and the evidence for retinal and choroidal neurodegenerative and microvascular changes using optical coherence tomography technology. We aim to describe the potential role of optical imaging modalities in NPSLE diagnosis and their likely impact on the study of neuronal function.
Collapse
Affiliation(s)
- Arnaldo Dias-Santos
- Department of Ophthalmology, Centro Hospitalar de Lisboa Central, Lisbon, Portugal; Department of Ophthalmology, Hospital CUF Descobertas, Lisbon, Portugal; NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.
| | - Rita Pinto Proença
- Department of Ophthalmology, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Joana Tavares Ferreira
- Department of Ophthalmology, Centro Hospitalar de Lisboa Central, Lisbon, Portugal; Department of Ophthalmology, Hospital CUF Descobertas, Lisbon, Portugal; NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sofia Pinheiro
- Autoimmune Disease Unit, Unidade de Doenças Auto-imunes/Serviço Medicina 3, Hospital de Santo António dos Capuchos, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - João Paulo Cunha
- Department of Ophthalmology, Centro Hospitalar de Lisboa Central, Lisbon, Portugal; NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rui Proença
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Francisca Moraes-Fontes
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal; Autoimmune Disease Unit, Unidade de Doenças Auto-imunes/Serviço de Medicina 7.2, Hospital Curry Cabral, Centro Hospitalar de Lisboa Central, Lisbon, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
6
|
Al-Rayes H, Huraib G, Julkhuf S, Arfin M, Tariq M, Al-Asmari A. Apolipoprotein E Gene Polymorphisms in Saudi Patients with Systemic Lupus Erythematosus. CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2016; 9:81-7. [PMID: 27257397 PMCID: PMC4877081 DOI: 10.4137/cmamd.s38090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 01/29/2023]
Abstract
Apolipoprotein E (APOE) is a glycosylated protein with multiple biological properties. APOE gene polymorphism plays a central role in lipid metabolism and has recently been suggested to regulate inflammation. Our objective is to evaluate whether APOE polymorphism affects susceptibility to SLE. APOE genotyping was performed using ApoE StripAssay™ kit. Results indicated significantly higher frequencies of allele ε4 and genotype ε3/ε4 and lower frequencies of allele ε3 and genotype ε3/ε3 in SLE patients than controls. APOE ε2 allele was found in three patients, whereas it was absent in controls. The frequencies of allele ε4 and genotype ε3/ε4 were significantly higher in SLE patients with renal involvement and those of alleles ε2, ε4 and genotypes ε2/ε3, ε3/ε4 were higher in patients with neuropsychiatric symptoms. It is concluded that APOE allele ε4 is associated with susceptibility risk/clinical manifestations of SLE and ε2 may increase its severity while ε3 is protective for SLE in Saudis.
Collapse
Affiliation(s)
- Hannan Al-Rayes
- Department of Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ghaleb Huraib
- Medical Services Department, Ministry of Defence, Riyadh, Saudi Arabia
| | - Saeed Julkhuf
- Medical Services Department, Ministry of Defence, Riyadh, Saudi Arabia
| | - Misbahul Arfin
- Research Centre, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mohammad Tariq
- Research Centre, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | |
Collapse
|
7
|
A Systems Biology-Based Investigation into the Pharmacological Mechanisms of Sheng-ma-bie-jia-tang Acting on Systemic Lupus Erythematosus by Multi-Level Data Integration. Sci Rep 2015; 5:16401. [PMID: 26560501 PMCID: PMC4642335 DOI: 10.1038/srep16401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/12/2015] [Indexed: 11/08/2022] Open
Abstract
Sheng-ma-bie-jia-tang (SMBJT) is a Traditional Chinese Medicine (TCM) formula that is widely used for the treatment of Systemic Lupus Erythematosus (SLE) in China. However, molecular mechanism behind this formula remains unknown. Here, we systematically analyzed targets of the ingredients in SMBJT to evaluate its potential molecular mechanism. First, we collected 1,267 targets from our previously published database, the Traditional Chinese Medicine Integrated Database (TCMID). Next, we conducted gene ontology and pathway enrichment analyses for these targets and determined that they were enriched in metabolism (amino acids, fatty acids, etc.) and signaling pathways (chemokines, Toll-like receptors, adipocytokines, etc.). 96 targets, which are known SLE disease proteins, were identified as essential targets and the rest 1,171 targets were defined as common targets of this formula. The essential targets directly interacted with SLE disease proteins. Besides, some common targets also had essential connections to both key targets and SLE disease proteins in enriched signaling pathway, e.g. toll-like receptor signaling pathway. We also found distinct function of essential and common targets in immune system processes. This multi-level approach to deciphering the underlying mechanism of SMBJT treatment of SLE details a new perspective that will further our understanding of TCM formulas.
Collapse
|
8
|
The beneficial role of vitamin D in systemic lupus erythematosus (SLE). Clin Rheumatol 2012; 31:1423-35. [DOI: 10.1007/s10067-012-2033-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/04/2012] [Indexed: 02/06/2023]
|
9
|
Kozora E, Hanly JG, Lapteva L, Filley CM. Cognitive dysfunction in systemic lupus erythematosus: past, present, and future. ACTA ACUST UNITED AC 2009; 58:3286-98. [PMID: 18975345 DOI: 10.1002/art.23991] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elizabeth Kozora
- National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review deals with new information related to central nervous system lupus, with special emphasis on mechanisms engaged in inflammation and neurodegeneration. RECENT FINDINGS We report the very recent findings related to neuropsychiatric lupus in areas of (1) neuroimaging, (2) immunology and genetics, (3) biochemistry, and (4) neuropsychological tests. The relation between treatment of central nervous system lupus and immunologic/biochemical parameters as an outcome variable is also reported. SUMMARY The recent advances in the field of neuropsychiatric lupus allow better understanding of the pathogenesis of the disease and follow-up of disease activity during immunosuppressive treatment.
Collapse
Affiliation(s)
- Estelle Trysberg
- Department of Rheumatology and Inflammation Research, Göteborg University, Sahlgrenska University Hospital, Göteborg, Sweden
| | | |
Collapse
|