1
|
Danscher G, Rasmussen S. nanoGold and µGold inhibit autoimmune inflammation: a review. Histochem Cell Biol 2023; 159:225-232. [PMID: 36864314 PMCID: PMC10006034 DOI: 10.1007/s00418-023-02182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
The newest data on metallic gold have placed the noble metal central in the fight for the safe treatment of autoimmune inflammation. There are two different ways to use gold for the treatment of inflammation: gold microparticles > 20 µm and gold nanoparticles. The injection of gold microparticles (µGold) is a purely local therapy. µGold particles stay put where injected, and gold ions released from them are relatively few and taken up by cells within a sphere of only a few millimeters in diameter from their origin particles. The macrophage-induced release of gold ions may continue for years. Injection of gold nanoparticles (nanoGold), on the other hand, is spread throughout the whole body, and the bio-released gold ions, therefore, affect multitudes of cells all over the body, as when using gold-containing drugs such as Myocrisin. Since macrophages and other phagocytotic cells take up and transport nanoGold and remove it after a short period, repeated treatment is necessary. This review describes the details of the cellular mechanisms that lead to the bio-release of gold ions in µGold and nanoGold.
Collapse
Affiliation(s)
- Gorm Danscher
- Department of Biomedicine, Århus University, Århus, Denmark
| | - Sten Rasmussen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
2
|
Rasmussen S, Kjaer Petersen K, Kristiansen MK, Andersen JS, Aboo C, Thomsen ME, Skjoldemose E, Jørgensen NK, Stensballe A, Arendt-Nielsen L. Gold micro-particles for knee osteoarthritis. Eur J Pain 2022; 26:811-824. [PMID: 35076138 PMCID: PMC9307026 DOI: 10.1002/ejp.1909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 11/22/2022]
Abstract
Background This exploratory study investigates if intra‐articular injected gold microparticles in knee osteoarthritis (KOA) reduce immunomodulatory‐based pain via proteomic changes in the synovial fluid (SF) and serum. Methods Thirty patients with moderate KOA were included. Intraarticular injections with 20 mg gold microparticles (72.000 particles, 20–40 µm in diameter) using the patient's synovial fluid (SF) as carrier were performed. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) subscores for pain, stiffness, and function were assessed at inclusion, 8 weeks and 2 years The PainDetect questionnaire, pain pressure threshold (PPT), temporal summation (TS), and conditioned pain modulation (CPM), and pain diary were assessed at inclusion and 8 weeks. Proteome analysis was performed on SF and blood samples before and after 8 weeks of treatment. Results A decrease in WOMAC scores (pain (p = 0.0001), stiffness (p = 0.0088), activity (p = 0.0001)), PainDetect (p = 0.0002) and increase in PPT (p = 0.001) and CPM (p = 0.021) and a decrease in TS (p = 0.03) were found after 8 weeks compared to inclusion assessments. At 2 years follow‐up compared to baseline there was a decrease in WOMAC scores (pain (p = 0.0001), stiffness (p = 0.007), activity (p = 0.0001)) and PainDetect (p = 0.0001). In SF, 28 different proteins were downregulated and 11 upregulated (p < 0.05) mainly associated immune response. Similarly, 31 proteins were downregulated and 1 upregulated in serum (p < 0.05) reflecting key immune response and anatomical structure development processes. No adverse effects related to the treatment were recorded. Conclusions Gold microparticles injected intra‐articular in KOA joints may provide pain relief and an inflammatory modulatory effect based on proteome changes found in SF and serum. A randomized, controlled, double‐blind study is needed to infer a conclusion. Significance This study indicates that intra‐articular gold may provide advantages in clinical practice for managing knee osteoarthritic pain. The use of intraarticular gold can add new knowledge to the treatment of inflammation and pain.
Collapse
Affiliation(s)
- Sten Rasmussen
- Department of Clinical Medicine, Aalborg University.,Department of Orthopedic Surgery, Sport and Arthroscopy, Aalborg University Hospital
| | - Kristian Kjaer Petersen
- Department of Health Science and Technology, Aalborg University.,Center for Neuroplasticity and Pain, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | | | | | | | | | | | | | | | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Aalborg University.,Center for Neuroplasticity and Pain, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital
| |
Collapse
|
3
|
Sarkar S, Konar S, Prasad PN, Rajput S, Kumar BNP, Rao RR, Pathak A, Fisher PB, Mandal M. Micellear Gold Nanoparticles as Delivery Vehicles for Dual Tyrosine Kinase Inhibitor ZD6474 for Metastatic Breast Cancer Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7649-7659. [PMID: 28701038 DOI: 10.1021/acs.langmuir.7b01072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The therapeutic index of poorly water-soluble drugs is often hampered due to poor pharmacokinetics, reduced blood retention, and lack of effective drug concentrations in the tumor region. In order to overcome these issues, drugs are often delivered by use of delivery vehicles to provide an enhanced therapeutic index. Gold nanoparticles synthesized in micellar networks of amphiphilic block copolymer (AuNM) provide an efficient nanocarrier for tissue- and site-specific drug delivery owing to their low cytotoxicity and immunogenicity. AuNM is formed by exploiting the properties of both inorganic Au material and an amphiphilic polymer of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG). We further functionalized AuNM with the FDA-approved dual tyrosine kinase inhibitor ZD6474 and studied the physicochemical properties of the conjugate ZD6474-AuNM. Both AuNM and ZD6474-AuNM, with a diameter of ∼70 nm, were very stable at physiological pH. Conversely, at an acidic pH of 5.2, a slow sustained-release profile of ZD6474 was evident from AuNM, which could provide a method of facilitating release of the drug in an acidic tumor environment. In vitro, in triple-negative breast cancer cells, ZD6474-AuNM inhibited tumor cell proliferation, migration, and invasion and induced apoptosis. There was no detectable lysis of red blood cells observed when they were treated with AuNM and ZD6474-AuNM, confirming hemocompatibility. To reinforce the possibility of AuNM serving as a delivery vehicle, AuNM was conjugated with the IR680 dye for tracking, and this conjugate was systemically delivered in female nude mice bearing MDA-MB-231 human breast cancer xenografts. Fluorescence signal was retained in the tumor region in a temporal manner as compared to other organs, indicating passive retention of AuNM in the tumor locale. Moreover, delivery of ZD6474-AuNM in nude mice bearing MDA-MB-231 xenografts led to decreased tumor size as compared to the control group. The promising safety, targeting, and therapeutic results of systemic delivery of ZD6474 by AuNM provide an attractive alternative method for treating patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Siddik Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine , Richmond, Virginia 23298, United States
| | | | | | | | | | - Raj R Rao
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | | | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine , Richmond, Virginia 23298, United States
| | | |
Collapse
|
4
|
Liu J, Wang Y, Huang C, Xu J, Li Z, Xu L, He L, Sun Y, Wang Y, Xu S, Zhao P, Mao T, Tan B, Zhu F, Zhang P, Fang L. Efficacy and safety of Xinfeng capsule in patients with rheumatoid arthritis: a multi-center parallel-group double-blind randomized controlled trial. J TRADIT CHIN MED 2015; 35:487-98. [PMID: 26591677 DOI: 10.1016/s0254-6272(15)30130-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate the efficacy. and safety of Xinfeng capsule in patients suffering rheumatoid arthritis (RA). METHODS A multi-center parallel-group designed, double-blind, randomized, controlled trial was conducted. Totally 304 RA patients were assigned to two groups: one group was administered Xinfeng capsule (XFC) plus the placebo of leflunomide and the other given leflunomide (LEF) plus the placebo of XFC for twelve weeks. The clinical and laboratory parameters were compared at baseline and fourth, eighth, and twelfth weeks. RESULTS After twelve-week treatment, patients in two groups all showed some trend of effectiveness when compared in terms of American Rheumatism Association (ACR) recommended 20%, 50%, 70% improvement criteria, but it was insignificant. The validity in ameliorate modified disease activity score (DAS28) and laboratory indexes as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF) were also found no difference. The score of health assessment questionnaire (HAQ), self-rating anxiety scale (SAS), self-rating depression scale (SDS) and quality of life questionnaire with rheumatoid arthritis (RAQOL) both lower than the first week and the changes showed no difference. However, the score of SDS dropped more in XFC group than in the other. A total of 147 adverse reaction cases were reported, which shows no difference between the two groups. The most common adverse reactions were hepatic impairment, anemia, leukocytopenia, epigastric discomfort and phalacrosis. CONCLUSION XFC demonstrated better improvement in the scores of SDS and compared with those of LEF group.
Collapse
|
5
|
Kelderhouse LE, Robins MT, Rosenbalm KE, Hoylman EK, Mahalingam S, Low PS. Prediction of Response to Therapy for Autoimmune/Inflammatory Diseases Using an Activated Macrophage-Targeted Radioimaging Agent. Mol Pharm 2015; 12:3547-55. [PMID: 26333010 DOI: 10.1021/acs.molpharmaceut.5b00134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to select patients who will respond to therapy is especially acute for autoimmune/inflammatory diseases, where the costs of therapies can be high and the progressive damage associated with ineffective treatments can be irreversible. In this article we describe a clinical test that will rapidly predict the response of patients with an autoimmune/inflammatory disease to many commonly employed therapies. This test involves quantitative assessment of uptake of a folate receptor-targeted radioimaging agent ((99m)Tc-EC20) by a subset of inflammatory macrophages that accumulate at sites of inflammation. Murine models of four representative inflammatory diseases (rheumatoid arthritis, inflammatory bowel disease, pulmonary fibrosis, and atherosclerosis) show markedly decreased uptake of (99m)Tc-EC20 in inflamed lesions upon initiation of successful therapies, but no decrease in uptake upon administration of ineffective therapies, in both cases long before changes in clinical symptoms can be detected. This predictive capability should reduce costs and minimize morbidities associated with failed autoimmune/inflammatory disease therapies.
Collapse
Affiliation(s)
- Lindsay E Kelderhouse
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Meridith T Robins
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Katelyn E Rosenbalm
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Emily K Hoylman
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | | - Philip S Low
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Predicting Response to Therapy for Autoimmune and Inflammatory Diseases Using a Folate Receptor-Targeted Near-Infrared Fluorescent Imaging Agent. Mol Imaging Biol 2015; 18:201-8. [DOI: 10.1007/s11307-015-0876-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Karabulut S, Leszczynski J. Molecular structure of aurothioglucose: a comprehensive computational study. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Gold(I)-triphenylphosphine complexes with hypoxanthine-derived ligands: in vitro evaluations of anticancer and anti-inflammatory activities. PLoS One 2014; 9:e107373. [PMID: 25226034 PMCID: PMC4167326 DOI: 10.1371/journal.pone.0107373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/11/2014] [Indexed: 01/19/2023] Open
Abstract
A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1–9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their invitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4–6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4–6 showed a significantly higher invitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1–30 µM. Anti-inflammatory activity was evaluated invitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study.
Collapse
|
9
|
Labens R, Lascelles BDX, Charlton AN, Ferrero NR, Van Wettere AJ, Xia XR, Blikslager AT. Ex vivo effect of gold nanoparticles on porcine synovial membrane. Tissue Barriers 2014; 1:e24314. [PMID: 24665389 PMCID: PMC3879126 DOI: 10.4161/tisb.24314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) have great potential as carriers for local drug delivery and as a primary therapeutic for treatment of inflammation. Here we report on the AuNP-synovium interaction in an ex vivo model of intra-articular application for treatment of joint inflammation. Sheets of porcine femoropatellar synovium were obtained post mortem and each side of the tissue samples was maintained in a separate fluid environment. Permeability to AuNPs of different sizes (5-52 nm) and biomarker levels of inflammation were determined to characterize the ex vivo particle interaction with the synovium. Lipopolysaccharide or recombinant human interleukin-1β were added to fluid environments to assess the ex vivo effect of pro-inflammatory factors on permeability and biomarker levels. The synovium showed size selective permeability with only 5 nm AuNPs effectively permeating the entire tissues' width. This process was further governed by particle stability in the fluid environment. AuNPs reduced matrix metalloproteinase and lactate dehydrogenase activity and hyaluronic acid concentrations but had no effect on prostaglandin E2 levels. Exposure to pro-inflammatory factors did not significantly affect AuNP permeation or biomarker levels in this model. Results with ex vivo tissue modeling of porcine synovium support an anti-inflammatory effect of AuNPs warranting further investigation.
Collapse
Affiliation(s)
- Raphael Labens
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - B Duncan X Lascelles
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Anna N Charlton
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Nicole R Ferrero
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Arnaud J Van Wettere
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Xin-Riu Xia
- Department of Biology; College of Agriculture and Life Sciences; North Carolina State University; Raleigh, NC USA
| | - Anthony T Blikslager
- Center for Comparative Medicine & Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| |
Collapse
|
10
|
Kapoor SR, Filer A, Fitzpatrick MA, Fisher BA, Taylor PC, Buckley CD, McInnes IB, Raza K, Young SP. Metabolic profiling predicts response to anti-tumor necrosis factor α therapy in patients with rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 65:1448-56. [PMID: 23460124 PMCID: PMC3715109 DOI: 10.1002/art.37921] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 02/26/2013] [Indexed: 12/24/2022]
Abstract
Objective Anti–tumor necrosis factor (anti-TNF) therapies are highly effective in rheumatoid arthritis (RA) and psoriatic arthritis (PsA), but a significant number of patients exhibit only a partial or no therapeutic response. Inflammation alters local and systemic metabolism, and TNF plays a role in this. We undertook this study to determine if the patient's metabolic fingerprint prior to therapy could predict responses to anti-TNF agents. Methods Urine was collected from 16 RA patients and 20 PsA patients before and during therapy with infliximab or etanercept. Urine metabolic profiles were assessed using nuclear magnetic resonance spectroscopy. Discriminating metabolites were identified, and the relationship between metabolic profiles and clinical outcomes was assessed. Results Baseline urine metabolic profiles discriminated between RA patients who did or did not have a good response to anti-TNF therapy according to European League Against Rheumatism criteria, with a sensitivity of 88.9% and a specificity of 85.7%, with several metabolites contributing (in particular histamine, glutamine, xanthurenic acid, and ethanolamine). There was a correlation between baseline metabolic profiles and the magnitude of change in the Disease Activity Score in 28 joints from baseline to 12 months in RA patients (P = 0.04). In both RA and PsA, urinary metabolic profiles changed between baseline and 12 weeks of anti-TNF therapy. Within the responders, urinary metabolite changes distinguished between etanercept and infliximab treatment. Conclusion The clear relationship between urine metabolic profiles of RA patients at baseline and their response to anti-TNF therapy may allow development of novel approaches to the optimization of therapy. Differences in metabolic profiles during treatment with infliximab and etanercept in RA and PsA may reflect distinct mechanisms of action.
Collapse
Affiliation(s)
- Sabrina R Kapoor
- University of Birmingham and the Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Qin Z, Bischof JC. Thermophysical and biological responses of gold nanoparticle laser heating. Chem Soc Rev 2012; 41:1191-217. [DOI: 10.1039/c1cs15184c] [Citation(s) in RCA: 433] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids 2011; 42:803-11. [PMID: 21833767 PMCID: PMC3266496 DOI: 10.1007/s00726-011-0997-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/07/2011] [Indexed: 11/20/2022]
Abstract
Auranofin is a gold(I)-containing drug in clinical use as an antiarthritic agent. Recent studies showed that auranofin manifests interesting antiparasitic actions very likely arising from inhibition of parasitic enzymes involved in the control of the redox metabolism. Trypanothione reductase is a key enzyme of Leishmania infantum polyamine-dependent redox metabolism, and a validated target for antileishmanial drugs. As trypanothione reductase contains a dithiol motif at its active site and gold(I) compounds are known to be highly thiophilic, we explored whether auranofin might behave as an effective enzyme inhibitor and as a potential antileishmanial agent. Notably, enzymatic assays revealed that auranofin causes indeed a pronounced enzyme inhibition. To gain a deeper insight into the molecular basis of enzyme inhibition, crystals of the auranofin-bound enzyme, in the presence of NADPH, were prepared, and the X-ray crystal structure of the auranofin–trypanothione reductase–NADPH complex was solved at 3.5 Å resolution. In spite of the rather low resolution, these data were of sufficient quality as to identify the presence of the gold center and of the thiosugar of auranofin, and to locate them within the overall protein structure. Gold binds to the two active site cysteine residues of TR, i.e. Cys52 and Cys57, while the thiosugar moiety of auranofin binds to the trypanothione binding site; thus auranofin appears to inhibit TR through a dual mechanism. Auranofin kills the promastigote stage of L. infantum at micromolar concentration; these findings will contribute to the design of new drugs against leishmaniasis.
Collapse
|
13
|
Oliaro J, Van Ham V, Sacirbegovic F, Pasam A, Bomzon Z, Pham K, Ludford-Menting MJ, Waterhouse NJ, Bots M, Hawkins ED, Watt SV, Cluse LA, Clarke CJP, Izon DJ, Chang JT, Thompson N, Gu M, Johnstone RW, Smyth MJ, Humbert PO, Reiner SL, Russell SM. Asymmetric cell division of T cells upon antigen presentation uses multiple conserved mechanisms. THE JOURNAL OF IMMUNOLOGY 2010; 185:367-75. [PMID: 20530266 DOI: 10.4049/jimmunol.0903627] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Asymmetric cell division is a potential means by which cell fate choices during an immune response are orchestrated. Defining the molecular mechanisms that underlie asymmetric division of T cells is paramount for determining the role of this process in the generation of effector and memory T cell subsets. In other cell types, asymmetric cell division is regulated by conserved polarity protein complexes that control the localization of cell fate determinants and spindle orientation during division. We have developed a tractable, in vitro model of naive CD8(+) T cells undergoing initial division while attached to dendritic cells during Ag presentation to investigate whether similar mechanisms might regulate asymmetric division of T cells. Using this system, we show that direct interactions with APCs provide the cue for polarization of T cells. Interestingly, the immunological synapse disseminates before division even though the T cells retain contact with the APC. The cue from the APC is translated into polarization of cell fate determinants via the polarity network of the Par3 and Scribble complexes, and orientation of the mitotic spindle during division is orchestrated by the partner of inscuteable/G protein complex. These findings suggest that T cells have selectively adapted a number of evolutionarily conserved mechanisms to generate diversity through asymmetric cell division.
Collapse
Affiliation(s)
- Jane Oliaro
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Reagan McRae
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Pritha Bagchi
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - S. Sumalekshmy
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| |
Collapse
|
15
|
Zainali K, Danscher G, Jakobsen T, Jakobsen SS, Baas J, Møller P, Bechtold JE, Soballe K. Effects of gold coating on experimental implant fixation. J Biomed Mater Res A 2009; 88:274-80. [PMID: 18335533 DOI: 10.1002/jbm.a.31924] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insertions of orthopedic implants are traumatic procedures that trigger an inflammatory response. Macrophages have been shown to liberate gold ions from metallic gold. Gold ions are known to act in an antiinflammatory manner by inhibiting cellular NF-kappaB-DNA binding and suppressing I-kappa B-kinase activation. The present study investigated whether gilding implant surfaces augmented early implant osseointegration and implant fixation by its modulatory effect on the local inflammatory response. Ion release was traced by autometallographic silver enhancement. Gold-coated cylindrical porous coated Ti6Al4V implants were inserted press-fit in the proximal part of tibiae in nine canines and control implants without gold inserted contralateral. Observation time was 4 weeks. Biomechanical push-out tests showed that implants with gold coating had approximately 50% decrease in mechanical strength and stiffness. Histomorphometrical analyses showed gold-coated implants had a decrease in overall total bone-to-implant contact of 35%. Autometallographic analysis revealed few cells loaded with gold close to the gilded implant surface. The findings demonstrate that gilding of implants negatively affects mechanical strength and osseointegration because of a significant effect of the released gold ions on the local inflammatory process around the implant. The possibility that a partial metallic gold coating could prolong the period of satisfactory mechanical strength, however, cannot be excluded.
Collapse
Affiliation(s)
- Kasra Zainali
- Orthopaedic Research Center, Department of Orthopaedics, Aarhus University Hospital, Noerrebrogade 44, Building 1A, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gannon CJ, Patra CR, Bhattacharya R, Mukherjee P, Curley SA. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotechnology 2008; 6:2. [PMID: 18234109 PMCID: PMC2276230 DOI: 10.1186/1477-3155-6-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/30/2008] [Indexed: 02/17/2023] Open
Abstract
Background Novel approaches to treat human cancer that are effective with minimal toxicity profiles are needed. We evaluated gold nanoparticles (GNPs) in human hepatocellular and pancreatic cancer cells to determine: 1) absence of intrinsic cytotoxicity of the GNPs and 2) external radiofrequency (RF) field-induced heating of intracellular GNPs to produce thermal destruction of malignant cells. GNPs (5 nm diameter) were added to 2 human cancer cell lines (Panc-1, Hep3B). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and propidium iodide-fluorescence associated cell sorting (PI-FACS) assessed cell proliferation and GNP-related cytotoxicity. Other GNP-treated cells were exposed to a 13.56 MHz RF field for 1, 2, or 5 minutes, and then incubated for 24 hours. PI-FACS measured RF-induced cytotoxicity. Results GNPs had no impact on cellular proliferation by MTT assay. PI-FACS confirmed that GNPs alone produced no cytotoxicity. A GNP dose-dependent RF-induced cytotoxicity was observed. For Hep3B cells treated with a 67 μM/L dose of GNPs, cytotoxicity at 1, 2 and 5 minutes of RF was 99.0%, 98.5%, and 99.8%. For Panc-1 cells treated at the 67 μM/L dose, cytotoxicity at 1, 2, and 5 minutes of RF was 98.5%, 98.7%, and 96.5%. Lower doses of GNPs were associated with significantly lower rates of RF-induced thermal cytotoxicity for each cell line (P < 0.01). Cells not treated with GNPs but treated with RF for identical time-points had less cytotoxicity (Hep3B: 17.6%, 21%, and 75%; Panc-1: 15.3%, 26.4%, and 39.8%, all P < 0.01). Conclusion We demonstrate that GNPs 1) have no intrinsic cytotoxicity or anti-proliferative effects in two human cancer cell lines in vitro and 2) GNPs release heat in a focused external RF field. This RF-induced heat release is lethal to cancer cells bearing intracellular GNPs in vitro.
Collapse
Affiliation(s)
- Christopher J Gannon
- Department of Surgical Oncology, University of Texas M, D, Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | | | |
Collapse
|
17
|
Sopjani M, Föller M, Lang F. Gold stimulates Ca2+ entry into and subsequent suicidal death of erythrocytes. Toxicology 2007; 244:271-9. [PMID: 18207621 DOI: 10.1016/j.tox.2007.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 01/07/2023]
Abstract
The suicidal death of erythrocytes, eryptosis, is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the erythrocyte surface. Erythrocyte cell membrane scrambling is stimulated by increase of cytosolic Ca2+ concentration ([Ca2+](i)) and formation of ceramide. Phosphatidylserine (PS) exposing cells are rapidly cleared from circulating blood. Ca2+ entry and/or ceramide formation and thus eryptosis are triggered by lead, mercury, aluminium, and copper ions. The present study explored whether eryptosis could be similarly triggered by exposure to gold. To this end, erythrocytes from healthy volunteers were exposed to AuCl and phosphatidylserine exposure (annexin V binding), cell volume (forward scatter), [Ca2+](i) (Fluo3-dependent fluorescence), and ceramide formation (anti-ceramide-FITC fluorescence) were determined by flow cytometry. Exposure of erythrocytes to low concentrations of AuCl (> or =0.75microg/ml) increased [Ca2+](i) but did not affect ceramide formation. AuCl at concentrations > or =0.5microg/ml significantly increased the number of PS exposing erythrocytes and decreased forward scatter at low concentrations of AuCl pointing to cell shrinkage. Aurothiomalate (> or =1microg/ml), a gold containing drug effective against rheumatoid arthritis, similarly triggered PS exposure of erythrocytes. The present observations disclose a novel action of gold, which may well contribute to side effects during treatment with gold preparations.
Collapse
Affiliation(s)
- Mentor Sopjani
- Department of Physiology, University of Tübingen, Germany
| | | | | |
Collapse
|
18
|
Havarinasab S, Johansson U, Pollard KM, Hultman P. Gold causes genetically determined autoimmune and immunostimulatory responses in mice. Clin Exp Immunol 2007; 150:179-88. [PMID: 17680821 PMCID: PMC2219286 DOI: 10.1111/j.1365-2249.2007.03469.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Natrium aurothiomaleate (GSTM) is a useful disease-modifying anti-rheumatic drug, but causes a variety of immune-mediated adverse effects in many patients. A murine model was used to study further the interaction of GSTM with the immune system, including induction of systemic autoimmunity. Mice were given weekly intramuscular injections of GSTM and controls equimolar amounts of sodium thiomaleate. The effects of gold on lymphocyte subpopulations were determined by flow cytometry. Humoral autoimmunity was measured by indirect immunofluorescence and immunoblotting, and deposition of immunoglobulin and C3 used to assess immunopathology. Gold, in the form of GSTM, stimulated the murine immune system causing strain-dependent lymphoproliferation and autoimmunity, including a major histocompatibility complex (MHC)-restricted autoantibody response against the nucleolar protein fibrillarin. GSTM did not cause glomerular or vessel wall IgG deposits. However, it did elicit a strong B cell-stimulating effect, including both T helper 1 (Th1)- and Th2-dependent isotypes. All these effects on the immune system were dependent on the MHC genotype, emphasizing the clinical observations of a strong genetic linkage for the major adverse immune reactions seen with GSTM treatment.
Collapse
Affiliation(s)
- S Havarinasab
- Department of Clinical and Experimental Medicine, Molecular and Immunological Pathology, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
19
|
Noh SM, Kim WK, Kim SJ, Kim JM, Baek KH, Oh YK. Enhanced cellular delivery and transfection efficiency of plasmid DNA using positively charged biocompatible colloidal gold nanoparticles. Biochim Biophys Acta Gen Subj 2007; 1770:747-52. [PMID: 17324519 DOI: 10.1016/j.bbagen.2007.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 01/19/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Efficient and safe nonviral gene delivery systems are a prerequisite for the clinical application of therapeutic genes. In this study, we report an enhancement of the transfection efficiency of plasmid DNA, via the use of positively charged colloidal gold nanoparticles (PGN). Plasmid DNA encoding for murine interleukin-2 (pVAXmIL-2) was complexed with PGN at a variety of ratios. The delivery of pVAXmIL-2 into C2C12 cells was dependent on the complexation ratios between PGN and the plasmid DNA, presented the highest delivery at a ratio of 2400:1. After complexation with DNA, PGN showed significantly higher cellular delivery and transfection efficiency than did the polyethylenimines (PEI) of different molecular weights, such as PEI25K (m.w. 25 kd) and PEI2K (m.w. 2 kd). PGN resulted in a cellular delivery of pVAXmIL-2 6.3-fold higher than was seen with PEI25K. The PGN/DNA complex resulted in 3.2- and 2.1-fold higher murine IL-2 protein expression than was seen in association with the PEI25K/DNA and PEI2K/DNA complexes, respectively. Following intramuscular administration, PGN/DNA complexes showed more than 4 orders of magnitude higher expression levels as compared to naked DNA. Moreover, the PGN/DNA complexes showed higher cell viability than other cationic nonviral vectors. Collectively, the results of this study suggest that the PGN/DNA complexes may harbor the potential for development into efficient and safe gene delivery vehicles.
Collapse
Affiliation(s)
- Sang Myoung Noh
- Graduate School of Life Science and Biotechnology, Pochon CHA University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Yen JH. Treatment of early rheumatoid arthritis in developing countries. Biologics or disease-modifying anti-rheumatic drugs? Biomed Pharmacother 2006; 60:688-92. [PMID: 17049202 DOI: 10.1016/j.biopha.2006.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/20/2006] [Indexed: 11/21/2022] Open
Abstract
Biologics are highly effective in the treatment of rheumatoid arthritis (RA), but they are very expensive. The costs of biologics should limit their usage in patients with RA, especially in the developing countries. Therefore, it is necessary to develop suitable strategies for treating RA patients in these countries. In this article, the efficacy, toxicity, and cost-effectiveness of conventional DMARDs and biologics will be investigated. The therapeutic strategies for treating early RA will also be proposed.
Collapse
Affiliation(s)
- J-H Yen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| |
Collapse
|
21
|
Danscher G, Stoltenberg M. Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc–sulphur/zinc–selenium nanocrystals, (3) metal ions liberated from metal implants and particles. ACTA ACUST UNITED AC 2006; 41:57-139. [PMID: 16949439 DOI: 10.1016/j.proghi.2006.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Autometallographic (AMG) silver enhancement is a potent histochemical tool for tracing a variety of metal containing nanocrystals, e.g. pure gold and silver nanoclusters and quantum dots of silver, mercury, bismuth or zinc, with sulphur and/or selenium. These nanocrystals can be created in many different ways, e.g. (1) by manufacturing colloidal gold or silver particles, (2) by treating an organism in vivo with sulphide or selenide ions, (3) as the result of a metabolic decomposition of bismuth-, mercury- or silver-containing macromolecules in cell organelles, or (4) as the end product of histochemical processing of tissue sections. Such nano-sized AMG nanocrystals can then be silver-amplified several times of magnitude by being exposed to an AMG developer, i.e. a normal photographic developer enriched with silver ions. The present monograph attempts to provide a review of the autometallographic silver amplification techniques known today and their use in biology. After achieving a stronghold in histochemistry by Timm's introduction of the "silver-sulphide staining" in 1958, the AMG technique has evolved and expanded into several different areas of research, including immunocytochemistry, tracing of enzymes at LM and EM levels, blot staining, retrograde axonal tracing of zinc-enriched (ZEN) neurons, counterstaining of semithin sections, enhancement of histochemical reaction products, marking of phagocytotic cells, staining of myelin, tracing of gold ions released from gold implants, and visualization of capillaries. General technical comments, protocols for the current AMG methods and a summary of the most significant scientific results obtained by this wide variety of AMG histochemical approaches are included in the present article.
Collapse
Affiliation(s)
- Gorm Danscher
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
22
|
Roche PA. Gold-plating MHC class II molecules. Nat Chem Biol 2006; 2:178-9. [PMID: 16547476 DOI: 10.1038/nchembio0406-178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
De Wall SL, Painter C, Stone JD, Bandaranayake R, Wiley DC, Mitchison TJ, Stern LJ, DeDecker BS. Noble metals strip peptides from class II MHC proteins. Nat Chem Biol 2006; 2:197-201. [PMID: 16505807 DOI: 10.1038/nchembio773] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 01/31/2006] [Indexed: 11/08/2022]
Abstract
Class II major histocompatibility complex (MHC) proteins are essential for normal immune system function but also drive many autoimmune responses. They bind peptide antigens in endosomes and present them on the cell surface for recognition by CD4(+) T cells. A small molecule could potentially block an autoimmune response by disrupting MHC-peptide interactions, but this has proven difficult because peptides bind tightly and dissociate slowly from MHC proteins. Using a high-throughput screening assay we discovered a class of noble metal complexes that strip peptides from human class II MHC proteins by an allosteric mechanism. Biochemical experiments indicate the metal-bound MHC protein adopts a 'peptide-empty' conformation that resembles the transition state of peptide loading. Furthermore, these metal inhibitors block the ability of antigen-presenting cells to activate T cells. This previously unknown allosteric mechanism may help resolve how gold(I) drugs affect the progress of rheumatoid arthritis and may provide a basis for developing a new class of anti-autoimmune drugs.
Collapse
Affiliation(s)
- Stephen L De Wall
- Institute of Chemistry and Cell Biology, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|