1
|
Ren Z, Li C, Wang J, Sui J, Ma Y. Single-cell transcriptome revealed dysregulated RNA-binding protein expression patterns and functions in human ankylosing spondylitis. Front Med (Lausanne) 2024; 11:1369341. [PMID: 38770048 PMCID: PMC11104332 DOI: 10.3389/fmed.2024.1369341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Objective To explore the expression characteristics and regulatory patterns of RBPs in different immune cell types of AS, and to clarify the potential key role of RBPs in the occurrence and development of AS disease. Methods PBMC sample data from scRNA-seq (HC*29, AS*10) and bulk RNA-seq (NC*3, AS*5) were selected for correlation analysis. Results (1) Compared with the HC group, the numbers of B, DC (dendritic cells), CD14+ Mono and CD8+ T cells were increased in AS group, while the numbers of platelet (platelets), CD8+ NKT, CD16+ Mono (non-classical monocytes), Native CD4+ T and NK were decreased. (2) Through the analysis of RBP genes in B cells, some RBPs were found to play an important role in B cell differentiation and function, such as DDX3X, SFPQ, SRRM1, UPF2. (3) It may be related to B-cell receptor, IgA immunity, NOD-like receptor and other signaling pathways; Through the analysis of RBP genes in CD8+ T cells, some RBPs that play an important role in the immune regulation of CD8+ T were found, such as EIF2S3, EIF4B, HSPA5, MSL3, PABPC1 and SRSF7; It may be related to T cell receptor, TNF, IL17 and other signaling pathways. (4) Based on bulk RNA-seq, it was found that compared with HC and AS patients, differentially expressed variable splicing genes (RASGs) may play an important role in the occurrence and development of AS by participating in transcriptional regulation, protein phosphorylation and ubiquitination, DNA replication, angiogenesis, intracellular signal transduction and other related pathways. Conclusion RBPs has specific expression characteristics in different immune cell types of AS patients, and has important regulatory functions. Its abnormal expression and regulation may be closely related to the occurrence and development of AS.
Collapse
Affiliation(s)
- Zheng Ren
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Chenyang Li
- Microsurgery Unit, The Third People’s Hospital of Xinjiang, Ürümqi, Xinjiang, China
| | - Jing Wang
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Jiangtao Sui
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Yuan Ma
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| |
Collapse
|
2
|
Wang H, Jin H, Liu Z, Tan C, Wei L, Fu M, Huang Y. Screening and identification of key chromatin regulator biomarkers for ankylosing spondylitis and drug prediction: evidence from bioinformatics analysis. BMC Musculoskelet Disord 2023; 24:389. [PMID: 37193965 DOI: 10.1186/s12891-023-06490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is one of the most common immune-mediated arthritic diseases worldwide. Despite considerable efforts to elucidate its pathogenesis, the molecular mechanisms underlying AS are still not fully understood. METHODS To identify candidate genes involved in AS progression, the researchers downloaded the microarray dataset GSE25101 from the Gene Expression Omnibus (GEO) database. They identified differentially expressed genes (DEGs) and functionally enriched them for analysis. They also constructed a protein-protein interaction network (PPI) using STRING and performed cytoHubba modular analysis, immune cell and immune function analysis, functional analysis and drug prediction.The results showed that DEGs were mainly associated with histone modifications, chromatin organisation, transcriptional coregulator activity, transcriptional co-activator activity, histone acetyltransferase complexes and protein acetyltransferase complexes. RESULTS The researchers analysed the differences in expression between the CONTROL and TREAT groups in terms of immunity to determine their effect on TNF-α secretion. By obtaining hub genes, they predicted two therapeutic agents, AY 11-7082 and myricetin. CONCLUSION The DEGs, hub genes and predicted drugs identified in this study contribute to our understanding of the molecular mechanisms underlying the onset and progression of AS. They also provide candidate targets for the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Han Wang
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Hongbo Jin
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Zhiyang Liu
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Chengju Tan
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Lin Wei
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Mingfen Fu
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China
| | - Yizhuan Huang
- Acupuncture and Massage Department, Affiliated Sport Hospital of CDSU, number 251, Wu Hou Ci Da Jie, Cheng Du, Si Chuan, 610041, China.
| |
Collapse
|
3
|
Fatica M, D'Antonio A, Novelli L, Triggianese P, Conigliaro P, Greco E, Bergamini A, Perricone C, Chimenti MS. How Has Molecular Biology Enhanced Our Undertaking of axSpA and Its Management. Curr Rheumatol Rep 2023; 25:12-33. [PMID: 36308677 PMCID: PMC9825525 DOI: 10.1007/s11926-022-01092-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE This review aims at investigating pathophysiological mechanisms in spondyloarthritis (SpA). Analysis of genetic factors, immunological pathways, and abnormalities of bone metabolism lay the foundations for a better understanding of development of the axial clinical manifestations in patients, allowing physician to choose the most appropriate therapeutic strategy in a more targeted manner. RECENT FINDINGS In addition to the contribution of MHC system, findings emerged about the role of non-HLA genes (as ERAP1 and 2, whose inhibition could represent a new therapeutic approach) and of epigenetic mechanisms that regulate the expression of genes involved in SpA pathogenesis. Increasing evidence of bone metabolism abnormalities secondary to the activation of immunological pathways suggests the development of various bone anomalies that are present in axSpA patients. SpA are a group of inflammatory diseases with a multifactorial origin, whose pathogenesis is linked to the genetic predisposition, the action of environmental risk factors, and the activation of immune response. It is now well known how bone metabolism leads to long-term structural damage via increased bone turnover, bone loss and osteoporosis, osteitis, erosions, osteosclerosis, and osteoproliferation. These effects can exist in the same patient over time or even simultaneously. Evidence suggests a cross relationship among innate immunity, autoimmunity, and bone remodeling in SpA, making treatment approach a challenge for rheumatologists. Specifically, treatment targets are consistently increasing as new drugs are upcoming. Both biological and targeted synthetic drugs are promising in terms of their efficacy and safety profile in patients affected by SpA.
Collapse
Affiliation(s)
- Mauro Fatica
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Arianna D'Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Novelli
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Greco
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Bergamini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
4
|
Wang J, Xue Y, Zhou L. Comparison of immune cells and diagnostic markers between spondyloarthritis and rheumatoid arthritis by bioinformatics analysis. J Transl Med 2022; 20:196. [PMID: 35509008 PMCID: PMC9066892 DOI: 10.1186/s12967-022-03390-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/09/2022] [Indexed: 12/19/2022] Open
Abstract
Background Spondyloarthritis (SpA) and rheumatoid arthritis (RA) are chronic autoimmune diseases, but they are usually difficult to distinguish in the early stage of the diseases. The purpose of this study is to explore the differences of immune mechanism and diagnostic markers through bioinformatics analysis. Methods First, microarray datasets from patients with SpA, RA and normal controls were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between groups were identified in R software. Functional and pathway enrichment of DEGs were analyzed by David database. Then, we screened the hub genes using Cytoscape plugin, and constructed the protein–protein interaction (PPI) network and heatmap of hub genes. After that, CIBERSORT was used to evaluate the differences and connections of immune cells in SpA and RA, and screened out diagnostic markers. Correlation analysis was used to analyze the relationship between immune cells and diagnostic markers. Finally, quantitative real-time polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of immunodiagnostic markers. Results We obtained three datasets, from which we can see that the functional enrichment of DEGs is mainly in cell chemotaxis, lymphocyte activation, primary immunodeficiency and other immune responses. The difference of immune cells between SpA, RA and normal control was concentrated in B, T lymphocytes cells, macrophages and dendritic cells. C19orf12 + S1PR3 is most associated with these immune cells and S1PR3 can be used as a diagnostic marker of this kind of immune diseases. In addition, MZB1 + XIST is closely related to T cells, NK cells and dendritic cells, and is expected to be used as a marker to distinguish the two diseases. Conclusion Although the clinical manifestations of SpA and RA are similar, the pathogenesis is different. The screening of immune cells and diagnostic markers provides a more accurate target for the treatment of this kind of diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03390-y.
Collapse
Affiliation(s)
- Jiaqian Wang
- Department of Orthopaedic, Wuxi No.5 People's Hospital, Wuxi, 214000, China.
| | - Yuan Xue
- Department of Orthopaedic, Wuxi Ninth People's Hospital of Soochow University, Wuxi, 214000, China
| | - Liang Zhou
- Department of Orthopaedic, Lianshui County Hospital, Huai'an, 223001, China.
| |
Collapse
|
5
|
Gulino GR, Van Mechelen M, Lories R. Cellular and molecular diversity in spondyloarthritis. Semin Immunol 2021; 58:101521. [PMID: 34763975 DOI: 10.1016/j.smim.2021.101521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The spondyloarthritides are a cluster of inflammatory rheumatic diseases characterized by different diagnostic entities with heterogeneous phenotypes. The current classification system groups spondyloarthritis patients in two main categories, axial and peripheral spondyloarthritis, providing a framework wherein the clinical picture guides the treatment. However, the heterogeneity of the clinical manifestations of the pathologies, even when residing in the same group, highlights the importance of analyzing the smallest features of each entity to understand how different cellular subsets evolve, what the underlying mechanisms are and what biological markers can be identified and validated to evaluate the stage of disease and the corresponding efficacy of treatments. In this review, we will focus mostly on axial spondyloarthritis, report current knowledge concerning the cellular populations involved in its pathophysiology, and their molecular diversity. We will discuss the implications of such a diversity, and their meaning in terms of patients' stratification.
Collapse
Affiliation(s)
- G R Gulino
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium
| | - M Van Mechelen
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Belgium
| | - R Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Belgium.
| |
Collapse
|
6
|
Abstract
Spondyloarthritis (SpA) is a blanket term encompassing entities such as enthesitis-related arthritis, nonradiographic axial SpA, and ankylosing spondylitis. These diseases share many clinical features, including a predilection for inflammation of the entheses and the sacroiliac joints. The nomenclature is based on the evolution of the classification of the disease and the age of the patient. SpA has a prevalence of approximately 1% of the population of the United States, with 10% to 20% of patients experiencing the onset during childhood. Children with onset of arthritis before age 16 years are classified as having juvenile idiopathic arthritis. Children with enthesitis and/or sacroiliitis are further classified as belonging to the enthesitis-related arthritis subtype of juvenile idiopathic arthritis. The initial manifestations can be subtle and will usually include a peripheral pattern of arthritis and enthesitis. It may take several years for axial disease to develop in children. Except for an association with the human leukocyte antigen (HLA-B27) serotype, there are no laboratory markers for the disease, and the radiographic findings are often negative. A careful clinical evaluation for evidence of inflammation in the entheses and the joints and a search for comorbidities are required. Magnetic resonance imaging facilitates the early detection of sacroiliitis, an important feature that may be clinically silent. Because recent studies indicate that earlier introduction of therapy can help achieve better outcomes, rapid identification and treatment of children with SpA is essential.
Collapse
Affiliation(s)
- Lita Aeder
- Department of Pediatrics, Brookdale University Hospital and Medical Center, New York, NY; and State University of New York Health Science Center at Brooklyn, Brooklyn, NY
| | - Karen B Onel
- Department of Pediatric Rheumatology, Hospital for Special Surgery, New York, NY; and Department of Clinical Pediatrics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
7
|
Mao D, Li H, Zhang L, Xu J, Yu C, Zhang Q. Bilobalide alleviates IL-17-induced inflammatory injury in ATDC5 cells by downregulation of microRNA-125a. J Biochem Mol Toxicol 2019; 33:e22405. [PMID: 31593333 DOI: 10.1002/jbt.22405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 09/18/2019] [Indexed: 01/03/2023]
Abstract
Ankylosing spondylitis (AS) is a high disability and greatly destructive disease. In this study, we preliminarily studied the function and mechanism of bilobalide (BIL) on interleukin (IL)-17-induced inflammatory injury in ATDC5 cells. CCK-8 and migration assays were used to detect the functions of IL-7, BIL, and microRNA (miR)-125a on cell viability and migration. The miR-125a level was changed by transfection, and tested by real-time quantitative polymerase chain reaction. Additionally, Western blot tested the levels of inflammatory factors (IL-6 and tumor necrosis factor-α), matrix metalloproteinases (MMPs), and pathway-related proteins. Moreover, the enzyme-linked immunosorbent assay also was used to detect inflammatory factor levels. IL-7 was used to construct an inflammatory injury model in ATDC5 cells. Based on this, BIL inhibited IL-17-induced cell viability, migration, and expressions of inflammatory factors and MMPs. Furthermore, we found BIL negatively regulated miR-125a, and the miR-125a mimic could partly reverse the effects of BIL on IL-17-injury. Finally, we showed that BIL inhibited the c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-κB) pathways, and the miR-125a mimic had the opposite effect. BIL inhibited IL-17-induced inflammatory injury in ATDC5 cells by downregulation of miR-125a via JNK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Dongmei Mao
- Department of Cardiology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Hong Li
- Department of Critical Care Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Lei Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Jian Xu
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Chunyan Yu
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Qi Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
8
|
Think autoimmunity, breath autoimmunity, and learn autoimmunity. Clin Rheumatol 2019; 38:1227-1230. [PMID: 30980191 DOI: 10.1007/s10067-019-04540-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
|