1
|
Koker O, Sahin S, Yildiz M, Adrovic A, Kasapcopur O. The emerging paradigm in pediatric rheumatology: harnessing the power of artificial intelligence. Rheumatol Int 2024; 44:2315-2325. [PMID: 39012357 PMCID: PMC11424736 DOI: 10.1007/s00296-024-05661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Artificial intelligence algorithms, with roots extending into the past but experiencing a resurgence and evolution in recent years due to their superiority over traditional methods and contributions to human capabilities, have begun to make their presence felt in the field of pediatric rheumatology. In the ever-evolving realm of pediatric rheumatology, there have been incremental advancements supported by artificial intelligence in understanding and stratifying diseases, developing biomarkers, refining visual analyses, and facilitating individualized treatment approaches. However, like in many other domains, these strides have yet to gain clinical applicability and validation, and ethical issues remain unresolved. Furthermore, mastering different and novel terminologies appears challenging for clinicians. This review aims to provide a comprehensive overview of the current literature, categorizing algorithms and their applications, thus offering a fresh perspective on the nascent relationship between pediatric rheumatology and artificial intelligence, highlighting both its advancements and constraints.
Collapse
Affiliation(s)
- Oya Koker
- Department of Pediatric Rheumatology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Sezgin Sahin
- Department of Pediatric Rheumatology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Yildiz
- Department of Pediatric Rheumatology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Amra Adrovic
- Department of Pediatric Rheumatology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozgur Kasapcopur
- Department of Pediatric Rheumatology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
2
|
Srinivasan B, Venkataraman A, Raja SN. Artificial intelligence and pain management: cautiously optimistic. Pain Manag 2024; 14:331-333. [PMID: 39259215 PMCID: PMC11485867 DOI: 10.1080/17581869.2024.2392483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Bhargav Srinivasan
- Department of Computer Science, Brendan Iribe Center for Computer Science and Engineering, University of Maryland, 8125 Pain Branch Drive, College Park, MD 20742, USA
| | - Archana Venkataraman
- Department of Electrical and Computer Engineering, Rafik B. Hariri Institute for Computing and Computational Science & Engineering, Boston University College of Engineering, 8 St. Mary's Street, Boston, MA02215, USA
| | - Srinivasa N Raja
- The Johns Hopkins University School of Medicine, 600 North Wolfe St., Baltimore, MD21287, USA
| |
Collapse
|
3
|
Teodorowski P, Jones E, Tahir N, Ahmed S, Rodgers SE, Frith L. Public Involvement and Engagement in Big Data Research: Scoping Review. J Particip Med 2024; 16:e56673. [PMID: 39150751 PMCID: PMC11364952 DOI: 10.2196/56673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND The success of big data initiatives depends on public support. Public involvement and engagement could be a way of establishing public support for big data research. OBJECTIVE This review aims to synthesize the evidence on public involvement and engagement in big data research. METHODS This scoping review mapped the current evidence on public involvement and engagement activities in big data research. We searched 5 electronic databases, followed by additional manual searches of Google Scholar and gray literature. In total, 2 public contributors were involved at all stages of the review. RESULTS A total of 53 papers were included in the scoping review. The review showed the ways in which the public could be involved and engaged in big data research. The papers discussed a broad range of involvement activities, who could be involved or engaged, and the importance of the context in which public involvement and engagement occur. The findings show how public involvement, engagement, and consultation could be delivered in big data research. Furthermore, the review provides examples of potential outcomes that were produced by involving and engaging the public in big data research. CONCLUSIONS This review provides an overview of the current evidence on public involvement and engagement in big data research. While the evidence is mostly derived from discussion papers, it is still valuable in illustrating how public involvement and engagement in big data research can be implemented and what outcomes they may yield. Further research and evaluation of public involvement and engagement in big data research are needed to better understand how to effectively involve and engage the public in big data research. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR2-https://doi.org/10.1136/bmjopen-2021-050167.
Collapse
Affiliation(s)
- Piotr Teodorowski
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Elisa Jones
- Department of Public Health, Policy & Systems, University of Liverpool, Liverpool, United Kingdom
| | - Naheed Tahir
- National Institute for Health and Care Research Applied Research Collaboration North West Coast, Liverpool, United Kingdom
| | - Saiqa Ahmed
- National Institute for Health and Care Research Applied Research Collaboration North West Coast, Liverpool, United Kingdom
| | - Sarah E Rodgers
- Department of Public Health, Policy & Systems, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Frith
- Centre for Social Ethics and Policy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Tran L, Kandel H, Sari D, Chiu CH, Watson SL. Artificial Intelligence and Ophthalmic Clinical Registries. Am J Ophthalmol 2024; 268:263-274. [PMID: 39111520 DOI: 10.1016/j.ajo.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024]
Abstract
PURPOSE The recent advances in artificial intelligence (AI) represent a promising solution to increasing clinical demand and ever limited health resources. Whilst powerful, AI models require vast amounts of representative training data to output meaningful predictions in the clinical environment. Clinical registries represent a promising source of large volume real-world data which could be used to train more accurate and widely applicable AI models. This review aims to provide an overview of the current applications of AI to ophthalmic clinical registry data. DESIGN AND METHODS A systematic search of EMBASE, Medline, PubMed, Scopus and Web of Science for primary research articles that applied AI to ophthalmic clinical registry data was conducted in July 2024. RESULTS Twenty-three primary research articles applying AI to ophthalmic clinic registries (n = 14) were found. Registries were primarily defined by the condition captured and the most common conditions where AI was applied were glaucoma (n = 3) and neovascular age-related macular degeneration (n = 3). Tabular clinical data was the most common form of input into AI algorithms and outputs were primarily classifiers (n = 8, 40%) and risk quantifier models (n = 7, 35%). The AI algorithms applied were almost exclusively supervised conventional machine learning models (n = 39, 85%) such as decision tree classifiers and logistic regression, with only 7 applications of deep learning or natural language processing algorithms. Significant heterogeneity was found with regards to model validation methodology and measures of performance. CONCLUSIONS Limited applications of deep learning algorithms to clinical registry data have been reported. The lack of standardized validation methodology and heterogeneity of performance outcome reporting suggests that the application of AI to clinical registries is still in its infancy constrained by the poor accessibility of registry data and reflecting the need for a standardization of methodology and greater involvement of domain experts in the future development of clinically deployable AI.
Collapse
Affiliation(s)
- Luke Tran
- From the Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, (L.T., H.K., D.S., C.H.C., S.L.W.) Sydney, New South Wales, Australia.
| | - Himal Kandel
- From the Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, (L.T., H.K., D.S., C.H.C., S.L.W.) Sydney, New South Wales, Australia
| | - Daliya Sari
- From the Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, (L.T., H.K., D.S., C.H.C., S.L.W.) Sydney, New South Wales, Australia
| | - Christopher Hy Chiu
- From the Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, (L.T., H.K., D.S., C.H.C., S.L.W.) Sydney, New South Wales, Australia
| | - Stephanie L Watson
- From the Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, (L.T., H.K., D.S., C.H.C., S.L.W.) Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Li LT, Haley LC, Boyd AK, Bernstam EV. Technical/Algorithm, Stakeholder, and Society (TASS) barriers to the application of artificial intelligence in medicine: A systematic review. J Biomed Inform 2023; 147:104531. [PMID: 37884177 DOI: 10.1016/j.jbi.2023.104531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION The use of artificial intelligence (AI), particularly machine learning and predictive analytics, has shown great promise in health care. Despite its strong potential, there has been limited use in health care settings. In this systematic review, we aim to determine the main barriers to successful implementation of AI in healthcare and discuss potential ways to overcome these challenges. METHODS We conducted a literature search in PubMed (1/1/2001-1/1/2023). The search was restricted to publications in the English language, and human study subjects. We excluded articles that did not discuss AI, machine learning, predictive analytics, and barriers to the use of these techniques in health care. Using grounded theory methodology, we abstracted concepts to identify major barriers to AI use in medicine. RESULTS We identified a total of 2,382 articles. After reviewing the 306 included papers, we developed 19 major themes, which we categorized into three levels: the Technical/Algorithm, Stakeholder, and Social levels (TASS). These themes included: Lack of Explainability, Need for Validation Protocols, Need for Standards for Interoperability, Need for Reporting Guidelines, Need for Standardization of Performance Metrics, Lack of Plan for Updating Algorithm, Job Loss, Skills Loss, Workflow Challenges, Loss of Patient Autonomy and Consent, Disturbing the Patient-Clinician Relationship, Lack of Trust in AI, Logistical Challenges, Lack of strategic plan, Lack of Cost-effectiveness Analysis and Proof of Efficacy, Privacy, Liability, Bias and Social Justice, and Education. CONCLUSION We identified 19 major barriers to the use of AI in healthcare and categorized them into three levels: the Technical/Algorithm, Stakeholder, and Social levels (TASS). Future studies should expand on barriers in pediatric care and focus on developing clearly defined protocols to overcome these barriers.
Collapse
Affiliation(s)
- Linda T Li
- Department of Surgery, Division of Pediatric Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, United States; McWilliams School of Biomedical Informatics at UT Health Houston, 7000 Fannin St, Suite 600, Houston, TX 77030, United States.
| | - Lauren C Haley
- McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, United States.
| | - Alexandra K Boyd
- McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, United States.
| | - Elmer V Bernstam
- McWilliams School of Biomedical Informatics at UT Health Houston, 7000 Fannin St, Suite 600, Houston, TX 77030, United States; McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, United States.
| |
Collapse
|
6
|
Al-Maini M, Maindarkar M, Kitas GD, Khanna NN, Misra DP, Johri AM, Mantella L, Agarwal V, Sharma A, Singh IM, Tsoulfas G, Laird JR, Faa G, Teji J, Turk M, Viskovic K, Ruzsa Z, Mavrogeni S, Rathore V, Miner M, Kalra MK, Isenovic ER, Saba L, Fouda MM, Suri JS. Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review. Rheumatol Int 2023; 43:1965-1982. [PMID: 37648884 DOI: 10.1007/s00296-023-05415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
The challenges associated with diagnosing and treating cardiovascular disease (CVD)/Stroke in Rheumatoid arthritis (RA) arise from the delayed onset of symptoms. Existing clinical risk scores are inadequate in predicting cardiac events, and conventional risk factors alone do not accurately classify many individuals at risk. Several CVD biomarkers consider the multiple pathways involved in the development of atherosclerosis, which is the primary cause of CVD/Stroke in RA. To enhance the accuracy of CVD/Stroke risk assessment in the RA framework, a proposed approach involves combining genomic-based biomarkers (GBBM) derived from plasma and/or serum samples with innovative non-invasive radiomic-based biomarkers (RBBM), such as measurements of synovial fluid, plaque area, and plaque burden. This review presents two hypotheses: (i) RBBM and GBBM biomarkers exhibit a significant correlation and can precisely detect the severity of CVD/Stroke in RA patients. (ii) Artificial Intelligence (AI)-based preventive, precision, and personalized (aiP3) CVD/Stroke risk AtheroEdge™ model (AtheroPoint™, CA, USA) that utilizes deep learning (DL) to accurately classify the risk of CVD/stroke in RA framework. The authors conducted a comprehensive search using the PRISMA technique, identifying 153 studies that assessed the features/biomarkers of RBBM and GBBM for CVD/Stroke. The study demonstrates how DL models can be integrated into the AtheroEdge™-aiP3 framework to determine the risk of CVD/Stroke in RA patients. The findings of this review suggest that the combination of RBBM with GBBM introduces a new dimension to the assessment of CVD/Stroke risk in the RA framework. Synovial fluid levels that are higher than normal lead to an increase in the plaque burden. Additionally, the review provides recommendations for novel, unbiased, and pruned DL algorithms that can predict CVD/Stroke risk within a RA framework that is preventive, precise, and personalized.
Collapse
Affiliation(s)
- Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, L4Z 4C4, Canada
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
- Asia Pacific Vascular Society, New Delhi, 110001, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, M13 9PL, UK
| | - Narendra N Khanna
- Asia Pacific Vascular Society, New Delhi, 110001, India
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, 110001, India
| | | | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, Canada
| | - Laura Mantella
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Vikas Agarwal
- Department of Immunology, SGPIMS, Lucknow, 226014, India
| | - Aman Sharma
- Department of Immunology, SGPIMS, Lucknow, 226014, India
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124, Thessaloniki, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, 94574, USA
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124, Cagliari, Italy
| | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753, Delmenhorst, Germany
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, UHID, 10 000, Zagreb, Croatia
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, 95823, USA
| | - Martin Miner
- Men's Health Centre, Miriam Hospital Providence, Providence, RI, 02906, USA
| | - Manudeep K Kalra
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
7
|
Madrid-García A, Merino-Barbancho B, Rodríguez-González A, Fernández-Gutiérrez B, Rodríguez-Rodríguez L, Menasalvas-Ruiz E. Understanding the role and adoption of artificial intelligence techniques in rheumatology research: An in-depth review of the literature. Semin Arthritis Rheum 2023; 61:152213. [PMID: 37315379 DOI: 10.1016/j.semarthrit.2023.152213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
The major and upward trend in the number of published research related to rheumatic and musculoskeletal diseases, in which artificial intelligence plays a key role, has exhibited the interest of rheumatology researchers in using these techniques to answer their research questions. In this review, we analyse the original research articles that combine both worlds in a five- year period (2017-2021). In contrast to other published papers on the same topic, we first studied the review and recommendation articles that were published during that period, including up to October 2022, as well as the publication trends. Secondly, we review the published research articles and classify them into one of the following categories: disease identification and prediction, disease classification, patient stratification and disease subtype identification, disease progression and activity, treatment response, and predictors of outcomes. Thirdly, we provide a table with illustrative studies in which artificial intelligence techniques have played a central role in more than twenty rheumatic and musculoskeletal diseases. Finally, the findings of the research articles, in terms of disease and/or data science techniques employed, are highlighted in a discussion. Therefore, the present review aims to characterise how researchers are applying data science techniques in the rheumatology medical field. The most immediate conclusions that can be drawn from this work are: multiple and novel data science techniques have been used in a wide range of rheumatic and musculoskeletal diseases including rare diseases; the sample size and the data type used are heterogeneous, and new technical approaches are expected to arrive in the short-middle term.
Collapse
Affiliation(s)
- Alfredo Madrid-García
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain; Escuela Técnica Superior de Ingenieros de Telecomunicación. Universidad Politécnica de Madrid, Avenida Complutense, 30, Madrid, 28040, Spain.
| | - Beatriz Merino-Barbancho
- Escuela Técnica Superior de Ingenieros de Telecomunicación. Universidad Politécnica de Madrid, Avenida Complutense, 30, Madrid, 28040, Spain
| | | | - Benjamín Fernández-Gutiérrez
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain
| | - Luis Rodríguez-Rodríguez
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain
| | - Ernestina Menasalvas-Ruiz
- Centro de Tecnología Biomédica. Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
8
|
Yuan Q, Zhao WL, Qin B. Big data and variceal rebleeding prediction in cirrhosis patients. Artif Intell Gastroenterol 2023; 4:1-9. [DOI: 10.35712/aig.v4.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 06/08/2023] Open
Abstract
Big data has convincing merits in developing risk stratification strategies for diseases. The 6 “V”s of big data, namely, volume, velocity, variety, veracity, value, and variability, have shown promise for real-world scenarios. Big data can be applied to analyze health data and advance research in preclinical biology, medicine, and especially disease initiation, development, and control. A study design comprises data selection, inclusion and exclusion criteria, standard confirmation and cohort establishment, follow-up strategy, and events of interest. The development and efficiency verification of a prognosis model consists of deciding the data source, taking previous models as references while selecting candidate predictors, assessing model performance, choosing appropriate statistical methods, and model optimization. The model should be able to inform disease development and outcomes, such as predicting variceal rebleeding in patients with cirrhosis. Our work has merits beyond those of other colleagues with respect to cirrhosis patient screening and data source regarding variceal bleeding.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Wen-Long Zhao
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
- Medical Data Science Academy, Chongqing 400016, China
- Chongqing Engineering Research Centre for Clinical Big-data and Drug Evaluation, Chongqing 400016, China
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
9
|
Galozzi P, Basso D, Plebani M, Padoan A. Artificial Intelligence and laboratory data in rheumatic diseases. Clin Chim Acta 2023; 546:117388. [PMID: 37187221 DOI: 10.1016/j.cca.2023.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Artificial intelligence (AI)-based medical technologies are rapidly evolving into actionable solutions for clinical practice. Machine learning (ML) algorithms can process increasing amounts of laboratory data such as gene expression immunophenotyping data and biomarkers. In recent years, the analysis of ML has become particularly useful for the study of complex chronic diseases, such as rheumatic diseases, heterogenous conditions with multiple triggers. Numerous studies have used ML to classify patients and improve diagnosis, to stratify the risk and determine disease subtypes, as well as to discover biomarkers and gene signatures. This review aims to provide examples of ML models for specific rheumatic diseases using laboratory data and some insights into relevant strengths and limitations. A better understanding and future application of these analytical strategies could facilitate the development of precision medicine for rheumatic patients.
Collapse
Affiliation(s)
- Paola Galozzi
- Department of Medicine-DIMED, University of Padova, Padova, Italy.
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padova, Padova, Italy; Laboratory Medicine Unit, University Hospital of Padova, Padova, Italy
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padova, Padova, Italy; Laboratory Medicine Unit, University Hospital of Padova, Padova, Italy
| | - Andrea Padoan
- Department of Medicine-DIMED, University of Padova, Padova, Italy; Laboratory Medicine Unit, University Hospital of Padova, Padova, Italy
| |
Collapse
|
10
|
Sauerbrei A, Kerasidou A, Lucivero F, Hallowell N. The impact of artificial intelligence on the person-centred, doctor-patient relationship: some problems and solutions. BMC Med Inform Decis Mak 2023; 23:73. [PMID: 37081503 PMCID: PMC10116477 DOI: 10.1186/s12911-023-02162-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Artificial intelligence (AI) is often cited as a possible solution to current issues faced by healthcare systems. This includes the freeing up of time for doctors and facilitating person-centred doctor-patient relationships. However, given the novelty of artificial intelligence tools, there is very little concrete evidence on their impact on the doctor-patient relationship or on how to ensure that they are implemented in a way which is beneficial for person-centred care.Given the importance of empathy and compassion in the practice of person-centred care, we conducted a literature review to explore how AI impacts these two values. Besides empathy and compassion, shared decision-making, and trust relationships emerged as key values in the reviewed papers. We identified two concrete ways which can help ensure that the use of AI tools have a positive impact on person-centred doctor-patient relationships. These are (1) using AI tools in an assistive role and (2) adapting medical education. The study suggests that we need to take intentional steps in order to ensure that the deployment of AI tools in healthcare has a positive impact on person-centred doctor-patient relationships. We argue that the proposed solutions are contingent upon clarifying the values underlying future healthcare systems.
Collapse
Affiliation(s)
- Aurelia Sauerbrei
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Big Data Institute, Old Road Campus, Oxford, OX3 7LF, UK.
| | - Angeliki Kerasidou
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Big Data Institute, Old Road Campus, Oxford, OX3 7LF, UK
| | - Federica Lucivero
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Big Data Institute, Old Road Campus, Oxford, OX3 7LF, UK
| | - Nina Hallowell
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Big Data Institute, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
11
|
SHIFTing artificial intelligence to be responsible in healthcare: A systematic review. Soc Sci Med 2022; 296:114782. [DOI: 10.1016/j.socscimed.2022.114782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
12
|
Kedra J, Davergne T, Braithwaite B, Servy H, Gossec L. Machine learning approaches to improve disease management of patients with rheumatoid arthritis: review and future directions. Expert Rev Clin Immunol 2021; 17:1311-1321. [PMID: 34890271 DOI: 10.1080/1744666x.2022.2017773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Although the management of rheumatoid arthritis (RA) has improved in major way over the last decades, this disease still leads to an important burden for patients and society, and there is a need to develop more personalized approaches. Machine learning (ML) methods are more and more used in health-related studies and can be applied to different sorts of data (clinical, radiological, or 'omics' data). Such approaches may improve the management of patients with RA. AREAS COVERED In this paper, we propose a review regarding ML approaches applied to RA. A scoping literature search was performed in PubMed, in September 2021 using the following MeSH terms: 'arthritis, rheumatoid' and 'machine learning'. Based on this search, the usefulness of ML methods for RA diagnosis, monitoring, and prediction of response to treatment and RA outcomes, is discussed. EXPERT OPINION ML methods have the potential to revolutionize RA-related research and improve disease management and patient care. Nevertheless, these models are not yet ready to contribute fully to rheumatologists' daily practice. Indeed, these methods raise technical, methodological, and ethical issues, which should be addressed properly to allow their implementation. Collaboration between data scientists, clinical researchers, and physicians is therefore required to move this field forward.
Collapse
Affiliation(s)
- Joanna Kedra
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France.,Rheumatology Department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Thomas Davergne
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France
| | | | | | - Laure Gossec
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France.,Rheumatology Department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| |
Collapse
|
13
|
Updates in deep learning research in ophthalmology. Clin Sci (Lond) 2021; 135:2357-2376. [PMID: 34661658 DOI: 10.1042/cs20210207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
Ophthalmology has been one of the early adopters of artificial intelligence (AI) within the medical field. Deep learning (DL), in particular, has garnered significant attention due to the availability of large amounts of data and digitized ocular images. Currently, AI in Ophthalmology is mainly focused on improving disease classification and supporting decision-making when treating ophthalmic diseases such as diabetic retinopathy, age-related macular degeneration (AMD), glaucoma and retinopathy of prematurity (ROP). However, most of the DL systems (DLSs) developed thus far remain in the research stage and only a handful are able to achieve clinical translation. This phenomenon is due to a combination of factors including concerns over security and privacy, poor generalizability, trust and explainability issues, unfavorable end-user perceptions and uncertain economic value. Overcoming this challenge would require a combination approach. Firstly, emerging techniques such as federated learning (FL), generative adversarial networks (GANs), autonomous AI and blockchain will be playing an increasingly critical role to enhance privacy, collaboration and DLS performance. Next, compliance to reporting and regulatory guidelines, such as CONSORT-AI and STARD-AI, will be required to in order to improve transparency, minimize abuse and ensure reproducibility. Thirdly, frameworks will be required to obtain patient consent, perform ethical assessment and evaluate end-user perception. Lastly, proper health economic assessment (HEA) must be performed to provide financial visibility during the early phases of DLS development. This is necessary to manage resources prudently and guide the development of DLS.
Collapse
|
14
|
Ursin F, Timmermann C, Orzechowski M, Steger F. Diagnosing Diabetic Retinopathy With Artificial Intelligence: What Information Should Be Included to Ensure Ethical Informed Consent? Front Med (Lausanne) 2021; 8:695217. [PMID: 34368192 PMCID: PMC8333706 DOI: 10.3389/fmed.2021.695217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The method of diagnosing diabetic retinopathy (DR) through artificial intelligence (AI)-based systems has been commercially available since 2018. This introduces new ethical challenges with regard to obtaining informed consent from patients. The purpose of this work is to develop a checklist of items to be disclosed when diagnosing DR with AI systems in a primary care setting. Methods: Two systematic literature searches were conducted in PubMed and Web of Science databases: a narrow search focusing on DR and a broad search on general issues of AI-based diagnosis. An ethics content analysis was conducted inductively to extract two features of included publications: (1) novel information content for AI-aided diagnosis and (2) the ethical justification for its disclosure. Results: The narrow search yielded n = 537 records of which n = 4 met the inclusion criteria. The information process was scarcely addressed for primary care setting. The broad search yielded n = 60 records of which n = 11 were included. In total, eight novel elements were identified to be included in the information process for ethical reasons, all of which stem from the technical specifics of medical AI. Conclusions: Implications for the general practitioner are two-fold: First, doctors need to be better informed about the ethical implications of novel technologies and must understand them to properly inform patients. Second, patient's overconfidence or fears can be countered by communicating the risks, limitations, and potential benefits of diagnostic AI systems. If patients accept and are aware of the limitations of AI-aided diagnosis, they increase their chances of being diagnosed and treated in time.
Collapse
|
15
|
Bergier H, Duron L, Sordet C, Kawka L, Schlencker A, Chasset F, Arnaud L. Digital health, big data and smart technologies for the care of patients with systemic autoimmune diseases: Where do we stand? Autoimmun Rev 2021; 20:102864. [PMID: 34118454 DOI: 10.1016/j.autrev.2021.102864] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/03/2021] [Indexed: 12/22/2022]
Abstract
The past decade has seen tremendous development in digital health, including in innovative new technologies such as Electronic Health Records, telemedicine, virtual visits, wearable technology and sophisticated analytical tools such as artificial intelligence (AI) and machine learning for the deep-integration of big data. In the field of rare connective tissue diseases (rCTDs), these opportunities include increased access to scarce and remote expertise, improved patient monitoring, increased participation and therapeutic adherence, better patient outcomes and patient empowerment. In this review, we discuss opportunities and key-barriers to improve application of digital health technologies in the field of autoimmune diseases. We also describe what could be the fully digital pathway of rCTD patients. Smart technologies can be used to provide real-world evidence about the natural history of rCTDs, to determine real-life drug utilization, advanced efficacy and safety data for rare diseases and highlight significant unmet needs. Yet, digitalization remains one of the most challenging issues faced by rCTD patients, their physicians and healthcare systems. Digital health technologies offer enormous potential to improve autoimmune rCTD care but this potential has so far been largely unrealized due to those significant obstacles. The need for robust assessments of the efficacy, affordability and scalability of AI in the context of digital health is crucial to improve the care of patients with rare autoimmune diseases.
Collapse
Affiliation(s)
- Hugo Bergier
- Service de rhumatologie, Centre National de Référence des Maladies Auto-immunes Systémiques Rares Est Sud-Ouest (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Loïc Duron
- Department of neuroradiology, A. Rothshield Foundation Hospital, Paris, France
| | - Christelle Sordet
- Service de rhumatologie, Centre National de Référence des Maladies Auto-immunes Systémiques Rares Est Sud-Ouest (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lou Kawka
- Service de rhumatologie, Centre National de Référence des Maladies Auto-immunes Systémiques Rares Est Sud-Ouest (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Aurélien Schlencker
- Service de rhumatologie, Centre National de Référence des Maladies Auto-immunes Systémiques Rares Est Sud-Ouest (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François Chasset
- Sorbonne Université, Faculté de médecine, Service de dermatologie et Allergologie, Hôpital Tenon, Paris, France
| | - Laurent Arnaud
- Department of neuroradiology, A. Rothshield Foundation Hospital, Paris, France.
| |
Collapse
|
16
|
Tom E, Keane PA, Blazes M, Pasquale LR, Chiang MF, Lee AY, Lee CS. Protecting Data Privacy in the Age of AI-Enabled Ophthalmology. Transl Vis Sci Technol 2020; 9:36. [PMID: 32855840 PMCID: PMC7424948 DOI: 10.1167/tvst.9.2.36] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Elysse Tom
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Pearse A Keane
- Medical Retina Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Institute of Ophthalmology, University College London, London, UK
| | - Marian Blazes
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Louis R Pasquale
- Eye and Vision Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael F Chiang
- Departments of Ophthalmology and Medical Informatics & Clinical Epidemiology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Y Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
17
|
The basics of data, big data, and machine learning in clinical practice. Clin Rheumatol 2020; 40:11-23. [PMID: 32504192 DOI: 10.1007/s10067-020-05196-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/05/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
Health informatics and biomedical computing have introduced the use of computer methods to analyze clinical information and provide tools to assist clinicians during the diagnosis and treatment of diverse clinical conditions. With the amount of information that can be obtained in the healthcare setting, new methods to acquire, organize, and analyze the data are being developed each day, including new applications in the world of big data and machine learning. In this review, first we present the most basic concepts in data science, including the structural hierarchy of information and how it is managed. A section is dedicated to discussing topics relevant to the acquisition of data, importantly the availability and use of online resources such as survey software and cloud computing services. Along with digital datasets, these tools make it possible to create more diverse models and facilitate collaboration. After, we describe concepts and techniques in machine learning used to process and analyze health data, especially those most widely applied in rheumatology. Overall, the objective of this review is to aid in the comprehension of how data science is used in health, with a special emphasis on the relevance to the field of rheumatology. It provides clinicians with basic tools on how to approach and understand new trends in health informatics analysis currently being used in rheumatology practice. If clinicians understand the potential use and limitations of health informatics, this will facilitate interdisciplinary conversations and continued projects relating to data, big data, and machine learning.
Collapse
|