1
|
Khalid W, Ali A, Arshad MS, Afzal F, Akram R, Siddeeg A, Kousar S, Rahim MA, Aziz A, Maqbool Z, Saeed A. Nutrients and bioactive compounds of Sorghum bicolor L. used to prepare functional foods: a review on the efficacy against different chronic disorders. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2071293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, China
- Food and Nutrition Society, Gilgit Baltistan, Pakistan
| | | | - Fareed Afzal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ramish Akram
- Department of Rehabilitation Sciences, The University of Faisalabad, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Safura Kousar
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Afifa Aziz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| |
Collapse
|
2
|
Peng X, Gao L, Aibai S. Antifatigue effects of anshenyizhi compound in acute excise‐treated mouse via modulation of AMPK/PGC‐1α‐related energy metabolism and Nrf2/ARE‐mediated oxidative stress. J Food Sci 2020; 85:1897-1906. [DOI: 10.1111/1750-3841.15149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoming Peng
- Xinjiang Institute of Traditional Uygur Medicine Urumqi Xinjiang 830011 China
- Xinjiang Production and Construction Corps Center Blood Station Urumqi Xinjiang 830000 China
| | - Li Gao
- Xinjiang Institute of Traditional Uygur Medicine Urumqi Xinjiang 830011 China
| | - Silafu Aibai
- Xinjiang Institute of Traditional Uygur Medicine Urumqi Xinjiang 830011 China
| |
Collapse
|
3
|
Forage Crop Lolium multiflorum Assisted Synthesis of AgNPs and Their Bioactivities Against Poultry Pathogenic Bacteria in In Vitro. Indian J Microbiol 2018; 58:507-514. [PMID: 30262961 DOI: 10.1007/s12088-018-0755-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 07/10/2018] [Indexed: 10/28/2022] Open
Abstract
Italian ryegrass is one of main feed for livestock animals/birds. It has potential antioxidant metabolites that can improve their health and protect them against various infectious diseases. In this work, we studied synthesis of silver nanoparticles assisted by forage crop Lolium multiflorum as a green synthesis way. Potential antibacterial efficacy of these synthesized nanosized silver nanoparticles against poultry pathogenic bacteria was then studied. Aqueous extract of IRG was used as reducing agent for bio-reduction of silver salt to convert Ag+ to Ag0 metallic nano-silver. Size, shape, metallic composition, functional group, and crystalline nature of these synthesized silver nanoparticles were then characterized using UV-Vis spectrophotometer, FESEM, EDX, FT-IT, and XRD, respectively. In addition, antibacterial effects of these synthesized AgNPs against poultry pathogenic bacteria were evaluated by agar well diffusion method. UV-Vis spectra showed strong absorption peak of 440-450 nm with differ reaction time ranging from 30 min to 24 h. FESEM measurements revealed particles sizes of around 20-100 nm, majority of which were spherical in shape while a few were irregular. These biosynthesized silver nanoparticles using IRG extract exhibited strong antibacterial activities against poultry pathogenic microorganisms, including Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli, and Bacillus subtilis. Overall results confirmed that IRG plant extract possessed potential bioactive compounds for converting silver ions into nanosized silver at room temperature without needing any external chemical for redox reaction. In addition, such synthesized AgNPs showed strong antibacterial activities against pathogenic bacteria responsible for infectious diseases in poultry.
Collapse
|
4
|
Antifatigue Potential Activity of Sarcodon imbricatus in Acute Excise-Treated and Chronic Fatigue Syndrome in Mice via Regulation of Nrf2-Mediated Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9140896. [PMID: 30050662 PMCID: PMC6046126 DOI: 10.1155/2018/9140896] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/22/2018] [Indexed: 11/19/2022]
Abstract
Sarcodon imbricatus (SI), a precious edible fungus, contains 35.22% of total sugar, 18.33% of total protein, 24 types of fatty acid, 16 types of amino acid, and 8 types of minerals. Encouragingly, it is rich in potential antioxidants such as total polyphenols (0.41%), total sterols (3.16%), and vitamins (0.44%). In the present study, the antifatigue properties of SI and its potential mechanisms of action were explored by the experiments on acute excise-treated mice and chronic fatigue syndrome (CFS) mice. SI (0.25, 0.5, and 1 g/kg) significantly enhanced exercise tolerance in the weight-loaded forced swimming test (FST) and rota-rod test (RRT) and reduced the immobility in the tail suspension test on CFS mice. SI markedly increased the levels of glycogen in the liver and adenosine triphosphate (ATP) in the liver and muscle and decreased the lactic acid (LD) and blood urea nitrogen (BUN) content in both acute swimming-treated mice and CFS mice. SI improved the endogenous cellular antioxidant enzyme contents in the two mouse models by improving the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels in serum, liver, and muscle, respectively. In CFS mice, the enhanced expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2), SOD1, SOD2, heme oxygenase-1 (HO-1), and catalase (CAT) in the liver were observed after a 32-day SI administration. Our data indicated that SI possessed antifatigue activity, which may be related to its ability to normalize energy metabolism and Nrf2-mediated oxidative stress. Consequently, SI can be expected to serve as a novel natural antifatigue supplement in health foods.
Collapse
|
5
|
A Phenolic Acid and Flavonoid Fraction Isolated from Lolium multiflorum Lam. Prevents d-Galactosamine-Induced Liver Damages through the Augmentation of Nrf2 Expression. Indian J Clin Biochem 2017; 34:68-75. [PMID: 30728675 DOI: 10.1007/s12291-017-0714-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
The aims of this study were to explore whether a phenolic acid and flavonoid fraction (named PAFF) isolated from Lolium multiflorum Lam. protects against d-galactosamine (GalN)-induced liver damages in mice and to investigate the associated mechanisms. ICR mice received oral administration with various concentrations (50, 100, and 200 mg/kg body weight) of PAFF once per 2 days for seven times before intraperitoneal injection with 800 mg/kg GalN. After a day of GalN challenge, blood and tissue samples were analyzed by biochemical, histopathological, real time RT-PCR, and Western blot methods. GalN challenge induced severe damage to hepatocytes with hepatocellular vacuolization and necrosis. GalN treatment increased serum ALT, ALP, AST, and LDH levels and hepatic MDA levels and stimulated mRNA and protein expressions of Nrf2 and HO-1 in the liver. GalN treatment also diminished the levels of GSH and the activities of CAT, SOD, and GPx in the liver. However, combined treatment with PAFF inhibited GalN-mediated increases in the histological damages and the levels of serum enzymes and hepatic MDA, restored the activities of hepatic antioxidant enzymes up to those in the control values, and augmented the GalN-stimulated expression of Nrf2 and HO-1 in the liver. Furthermore, PAFF treatment alone increased the cellular SOD activity and the expression of Nrf2 and HO-1 in the liver. Our results suggest that PAFF may protect against GalN-induced liver damage by decreasing oxidative stress and increasing cellular antioxidant activities through an activation of Nrf2/HO-1-dependent pathway.
Collapse
|
6
|
Choi KC, Son YO, Hwang JM, Kim BT, Chae M, Lee JC. Antioxidant, anti-inflammatory and anti-septic potential of phenolic acids and flavonoid fractions isolated from Lolium multiflorum. PHARMACEUTICAL BIOLOGY 2017; 55:611-619. [PMID: 27937124 PMCID: PMC6130696 DOI: 10.1080/13880209.2016.1266673] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/07/2016] [Accepted: 11/26/2016] [Indexed: 05/21/2023]
Abstract
CONTEXT Interest has recently renewed in using Lolium multiflorum Lam. (Poaceae) (called Italian ryegrass; IRG) silage as an antioxidant and anti-inflammatory diet. OBJECTIVE This study investigated the antioxidant, anti-inflammatory and anti-septic potential of IRG silage and identified the primary components in IRG active fractions. MATERIALS AND METHODS Total 16 fractions were separated from the chloroform-soluble extract of IRG aerial part using Sephadex LH-20 column before HPLC analysis. Antioxidant and anti-inflammatory activities of the fractions at doses of 0-100 μg/mL were investigated using various cell-free and cell-mediated assay systems. To explore anti-septic effect of IRG fractions, female ICR and BALB/c mice orally received 40 mg/kg of phenolic acid and flavonoid-rich active fractions F7 and F8 every other day for 10 days, respectively, followed by LPS challenge. RESULTS The active fractions showed greater antioxidant and anti-inflammatory potential compared with other fractions. IC50 values of F7 and F8 to reduce LPS-stimulated NO and TNF-α production were around 15 and 30 μg/mL, respectively. Comparison of retention times with authentic compounds through HPLC analysis revealed the presence of caffeic acid, ferulic acid, myricetin and kaempferol in the fractions as primary components. These fractions inhibited LPS-stimulated MAPK and NF-κB activation. Supplementation with F7 or F8 improved the survival rates of mice to 70 and 60%, respectively, in LPS-injected mice and reduced near completely serum TNF-α and IL-6 levels. DISCUSSION AND CONCLUSION This study highlights antioxidant, anti-inflammatory and anti-septic activities of IRG active fractions, eventually suggesting their usefulness in preventing oxidative damage and inflammatory disorders.
Collapse
Affiliation(s)
- Ki-Choon Choi
- Grassland and Forages Research Center, National Institute of Animal Science, Cheonan, South Korea
| | - Young-Ok Son
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jung-Min Hwang
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
| | - Beom-Tae Kim
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
| | - Minseon Chae
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
| | - Jeong-Chae Lee
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, South Korea
- CONTACT Jeong-Chae LeeInstitute of Oral Biosciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju54896, South Korea
| |
Collapse
|
7
|
de Morais Cardoso L, Pinheiro SS, Martino HSD, Pinheiro-Sant'Ana HM. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit Rev Food Sci Nutr 2017; 57:372-390. [PMID: 25875451 DOI: 10.1080/10408398.2014.887057] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sorghum is the fifth most produced cereal in the world and is a source of nutrients and bioactive compounds for the human diet. We summarize the recent findings concerning the nutrients and bioactive compounds of sorghum and its potential impact on human health, analyzing the limitations and positive points of the studies and proposing directions for future research. Sorghum is basically composed of starch, which is more slowly digested than that of other cereals, has low digestibility proteins and unsaturated lipids, and is a source of some minerals and vitamins. Furthermore, most sorghum varieties are rich in phenolic compounds, especially 3-deoxyanthocyanidins and tannins. The results obtained in vitro and in animals have shown that phenolics compounds and fat soluble compounds (polycosanols) isolated from sorghum benefit the gut microbiota and parameters related to obesity, oxidative stress, inflammation, diabetes, dyslipidemia, cancer, and hypertension. The effects of whole sorghum and its fractions on human health need to be evaluated. In conclusion, sorghum is a source of nutrients and bioactive compounds, especially 3-deoxyanthocyanidins, tannins, and polycosanols, which beneficially modulate, in vitro and in animals, parameters related to noncommunicable diseases. Studies should be conducted to evaluate the effects of different processing on protein and starch digestibility of sorghum as well as on the profile and bioavailability of its bioactive compounds, especially 3-deoxyanthocyanidins and tannins. Furthermore, the benefits resulting from the interaction of bioactive compounds in sorghum and human microbiota should be studied.
Collapse
Affiliation(s)
| | - Soraia Silva Pinheiro
- b Laboratory of Vitamins Analysis, Department of Nutrition and Health , Federal University of Viçosa , Minas Gerais , Brazil
| | - Hércia Stampini Duarte Martino
- c Laboratory of Experimental Nutrition, Department of Nutrition and Health , Federal University of Viçosa , Viçosa, Minas Gerais , Brazil
| | - Helena Maria Pinheiro-Sant'Ana
- b Laboratory of Vitamins Analysis, Department of Nutrition and Health , Federal University of Viçosa , Minas Gerais , Brazil
| |
Collapse
|
8
|
The Extrusion Process as an Alternative for Improving the Biological Potential of Sorghum Bran: Phenolic Compounds and Antiradical and Anti-Inflammatory Capacity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8387975. [PMID: 27738445 PMCID: PMC5055914 DOI: 10.1155/2016/8387975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/01/2016] [Accepted: 08/14/2016] [Indexed: 11/17/2022]
Abstract
Approximately 80% of sorghum phenolic compounds are linked to arabinoxylans by ester bonds, which are capable of resisting the digestion process in the upper gastrointestinal tract, compromising their bioaccessibility and biological potential. The aim of this study was to evaluate the effect of the extrusion process on the content of phenolic compounds in sorghum bran and its impact on phenolic compounds and antiradical and anti-inflammatory capacity. Results revealed that the extrusion process increased total phenol content in sorghum bran compared to nonextruded sorghum, particularly for extrusion at 180°C with 20% moisture content (2.0222 ± 0.0157 versus 3.0729 ± 0.0187 mg GAE/g +52%), which positively affected antiradical capacity measured by the DPPH and TEAC assays. The percentage of inhibition of nitric oxide (NO) production by RAW cells due to the presence of extruded sorghum bran extract was significantly higher than that of nonextruded sorghum bran extract (90.2 ± 1.9% versus 76.2 ± 1.3%). The results suggest that extruded sorghum bran could be used as a functional ingredient and provide advantages to consumers by reducing diseases related to oxidative stress and inflammation.
Collapse
|
9
|
Stefoska-Needham A, Beck EJ, Johnson SK, Tapsell LC. Sorghum: An Underutilized Cereal Whole Grain with the Potential to Assist in the Prevention of Chronic Disease. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1022832] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Baek JA, Chung NJ, Choi KC, Hwang JM, Lee JC. Hull extracts from pigmented rice exert antioxidant effects associated with total flavonoid contents and induce apoptosis in human cancer cells. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0032-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
11
|
Zhang YQ, Guan L, Zhong ZY, Chang M, Zhang DK, Li H, Lai W. The anti-inflammatory effect of cherry blossom extract (Prunus yedoensis) used in soothing skincare product. Int J Cosmet Sci 2014; 36:527-30. [PMID: 25065693 DOI: 10.1111/ics.12149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/15/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Previous investigations suggested that cherry blossoms could provide valuable bioactive materials. However, few observations regarding the anti-inflammatory effect of cherry blossoms were reported. This study was to explore the anti-inflammatory effect of cherry blossom extract (CBE), which was used as a soothing ingredient in skincare product. METHODS In vitro study, the anti-inflammatory effect of CBE on the nitric oxide (NO) inhibition assay in lipopolysaccharide (LPS)-treated RAW 264.7 cells was investigated. In vivo study, 40 volunteers were included in a randomized, single-blinded, placebo-controlled trial. 24-hour-occlusive test chambers were applied on the flexor side of the forearm with 3% sodium lauryl sulphate (SLS). Subsequently, the test areas were treated on 9 subsequent days with a cream containing 3% CBE or a placebo. Evaluation included a visual score and determination of erythema value (E value). RESULTS In vitro study, 2% CBE reduced NO production by 31.83% compared to the placebo. In the SLS irritant patch test, the visual score and erythema value of CBE were lower than that of the placebo on D5 and D9. CONCLUSION Cherry blossom extract shows good anti-inflammatory effect in vitro and in vivo and represents a promising functional ingredient in soothing skincare product by reducing skin inflammation.
Collapse
Affiliation(s)
- Y Q Zhang
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | |
Collapse
|