1
|
Uwineza C, Parchami M, Bouzarjomehr M, Taherzadeh MJ, Mahboubi A. Recent Developments in the Application of Filamentous Fungus Aspergillus oryzae in Ruminant Feed. Animals (Basel) 2024; 14:2427. [PMID: 39199960 PMCID: PMC11350777 DOI: 10.3390/ani14162427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
The resource-intensive nature of the ruminant farming sector, which has been exacerbated by population growth and increasing pressure to reduce feed antibiotics and growth promoters, has sparked interest in looking for sustainable alternative feed sources to enhance ruminant production efficiency. Edible filamentous fungi, rich in macronutrients like proteins, offer promise in reducing the reliance on conventional protein sources and antimicrobials to improve feed quality and animal performance. The inclusion of single-cell proteins, particularly filamentous fungi, in ruminant feed has long been of scientific and industrial interest. This review focuses on the potential application of the extensively studied Aspergillus oryzae and its fermentation extracts in ruminant nutrition. It provides an overview of conventional ruminant feed ingredients, supplements, and efficiency. Additionally, this review analyzes the re-utilization of organic residues for A. oryzae cultivation and examines the effects of adding fungal extracts to ruminant feed on ruminal digestibility and animal performance, all within a circular bioeconomy framework.
Collapse
Affiliation(s)
| | | | | | | | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (C.U.)
| |
Collapse
|
2
|
Yaşar Yildiz S. Exploring the Hot Springs of Golan: A Source of Thermophilic Bacteria and Enzymes with Industrial Promise. Curr Microbiol 2024; 81:101. [PMID: 38376803 DOI: 10.1007/s00284-024-03617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
In recent years, there has been a surge in research on extremophiles due to their remarkable ability to survive in harsh environments. Extremophile thermophilic bacteria provide thermostable enzymes for biotechnology and industry. Thermophilic bacteria live in extreme environments like hot springs at 45-80 °C. This study screens and isolates thermophilic bacteria and thermozymes from the Golan hot springs in Karakocan, Elazig, Turkey. The study also characterizes thermophilic bacteria and their thermozymes to understand their features and applications better. Golan hot spring water samples at 50 °C yielded 12 isolates. GKE 02, 07, 08, and 10 produce amylase, GKE 04, 08, and 11 cellulase, and GKE 06 xylanase. One isolate (GKE 08) displayed both amylolytic and cellulolytic activity on agar plates. GKE 02 had the highest plate assay amylolytic index (2.3) and amylase activity (67.87 U/ml). Plate assay indicates GKE 08 has 1.5 amylolytic index, 1.1 cellulolytic index, 38.57 U/ml amylase, and 6.81 U/ml cellulase. GKE 04 had the greatest cellulolytic index (1.7) and cellulase activity (27.46). GKE 06, the only xylanase producer, has 19.67 U/ml activity and 1.4 plate assay index. The investigation also included determining the optimal pH and temperature conditions for each enzyme. 16S rDNA gene sequencing revealed seven thermozyme-producing bacteria Bacillus, Geobacillus, and Thermomonas. Thermomonas hydrothermalis genome annotation showed glycosyl hydrolase genes for amylolytic and cellulolytic activity. The findings of this study on thermophilic bacteria and thermostable enzyme synthesis in the Golan hot springs are promising, particularly for T. hydrothermalis, which has limited research on its potential as a thermozyme producer.
Collapse
Affiliation(s)
- Songül Yaşar Yildiz
- Bioengineering Department, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey.
| |
Collapse
|
3
|
Priyanka U, Lens PNL. Enhanced production of amylase, pyruvate and phenolic compounds from glucose by light-driven Aspergillus niger-CuS nanobiohybrids. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2023; 98:602-614. [PMID: 37066082 PMCID: PMC10087041 DOI: 10.1002/jctb.7153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 06/19/2023]
Abstract
BACKGROUND The demand for value-added compounds such as amylase, pyruvate and phenolic compounds produced by biological methods has prompted the rapid development of advanced technologies for their enhanced production. Nanobiohybrids (NBs) make use of both the microbial properties of whole-cell microorganisms and the light-harvesting efficiency of semiconductors. Photosynthetic NBs were constructed that link the biosynthetic pathways of Aspergillus niger with CuS nanoparticles. RESULTS In this work, NB formation was confirmed by negative values of the interaction energy, i.e., 2.31 × 108 to -5.52 × 108 kJ mol-1 for CuS-Che NBs, whereas for CuS-Bio NBs the values were -2.31 × 108 to -4.62 × 108 kJ mol-1 for CuS-Bio NBs with spherical nanoparticle interaction. For CuS-Bio NBs with nanorod interaction, it ranged from -2.3 × 107 to -3.47 × 107 kJ mol-1 . Further, the morphological changes observed by scanning electron microscopy showed the presence of the elements Cu and S in the energy-dispersive X-ray spectra and the presence of CuS bonds in Fourier transform infrared spectroscopy indicate NB formation. In addition, the quenching effect in photoluminescence studies confirmed NB formation. Production yields of amylase, phenolic compounds and pyruvate amounted to 11.2 μmol L-1, 52.5 μmol L-1 and 28 nmol μL-1, respectively, in A. niger-CuS Bio NBs on the third day of incubation in the bioreactor. Moreover, A niger cells-CuS Bio NBs had amino acids and lipid yields of 6.2 mg mL-1 and 26.5 mg L-1, respectively. Furthermore, probable mechanisms for the enhanced production of amylase, pyruvate and phenolic compounds are proposed. CONCLUSION Aspergillus niger-CuS NBs were used for the production of the amylase enzyme and value-added compounds such as pyruvate and phenolic compounds. Aspergillus niger-CuS Bio NBs showed a greater efficiency compared to A. niger-CuS Che NBs as the biologically produced CuS nanoparticles had a higher compatibility with A. niger cells. © 2022 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
Collapse
Affiliation(s)
- Uddandarao Priyanka
- Department of Microbiology and Ryan InstituteNational University of IrelandGalwayIreland
| | - Piet NL Lens
- Department of Microbiology and Ryan InstituteNational University of IrelandGalwayIreland
| |
Collapse
|
4
|
Temperature and pH Profiling of Extracellular Amylase from Antarctic and Arctic Soil Microfungi. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While diversity studies and screening for enzyme activities are important elements of understanding fungal roles in the soil ecosystem, extracting and purifying the target enzyme from the fungal cellular system is also required to characterize the enzyme. This is, in particular, necessary before developing the enzyme for industrial-scale production. In the present study, partially purified α-amylase was obtained from strains of Pseudogymnoascus sp. obtained from Antarctic and Arctic locations. Partially purified α-amylases from these polar fungi exhibited very similar characteristics, including being active at 15 °C, although having a small difference in optimum pH. Both fungal taxa are good candidates for the potential application of cold-active enzymes in biotechnological industries, and further purification and characterization steps are now required. The α-amylases from polar fungi are attractive in terms of industrial development because they are active at lower temperatures and acidic pH, thus potentially creating energy and cost savings. Furthermore, they prevent the production of maltulose, which is an undesirable by-product often formed under alkaline conditions. Psychrophilic amylases from the polar Pseudogymnoascus sp. investigated in the present study could provide a valuable future contribution to biotechnological applications.
Collapse
|
5
|
Braia M, Cabezudo I, Barrera VL, Anselmi P, Meini MR, Romanini D. An optimization approach to the bioconversion of flour mill waste to α-amylase enzyme by Aspergillus oryzae. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Abdel-Mageed HM, Barakat AZ, Bassuiny RI, Elsayed AM, Salah HA, Abdel-Aty AM, Mohamed SA. Biotechnology approach using watermelon rind for optimization of α-amylase enzyme production from Trichoderma virens using response surface methodology under solid-state fermentation. Folia Microbiol (Praha) 2021; 67:253-264. [PMID: 34743285 DOI: 10.1007/s12223-021-00929-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
Production of amylases by fungi under solid-state fermentation is considered the best methodology for commercial scaling that addresses the ever-escalating needs of the worldwide enzyme market. Here response surface methodology (RSM) was used for the optimization of process variables for α-amylase enzyme production from Trichoderma virens using watermelon rinds (WMR) under solid-state fermentation (SSF). The statistical model included four variables, each detected at two levels, followed by model development with partial purification and characterization of α-amylase. The partially purified α-amylase was characterized with regard to optimum pH, temperature, kinetic constant, and substrate specificity. The results indicated that both pH and moisture content had a significant effect (P < 0.05) on α-amylase production (880 U/g) under optimized process conditions at a 3-day incubation time, moisture content of 50%, 30 °C, and pH 6.98. Statistical optimization using RSM showed R2 values of 0.9934, demonstrating the validity of the model. Five α-amylases were separated by using DEAE-Sepharose and characterized with a wide range of optimized pH values (pH 4.5-9.0), temperature optima (40-60 °C), low Km values (2.27-3.3 mg/mL), and high substrate specificity toward large substrates. In conclusion, this study presents an efficient and green approach for utilization of agro-waste for production of the valuable α-amylase enzyme using RSM under SSF. RSM was particularly beneficial for the optimization and analysis of the effective process parameters.
Collapse
Affiliation(s)
- Heidi M Abdel-Mageed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Behoth St, Dokki, Cairo, Egypt.
| | - Amal Z Barakat
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Behoth St, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Behoth St, Dokki, Cairo, Egypt
| | - Alshaimaa M Elsayed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Behoth St, Dokki, Cairo, Egypt
| | - Hala A Salah
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Behoth St, Dokki, Cairo, Egypt
| | - Azza M Abdel-Aty
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Behoth St, Dokki, Cairo, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Behoth St, Dokki, Cairo, Egypt
| |
Collapse
|
7
|
Balakrishnan M, Jeevarathinam G, Kumar SKS, Muniraj I, Uthandi S. Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes. BMC Biotechnol 2021; 21:33. [PMID: 33947396 PMCID: PMC8094467 DOI: 10.1186/s12896-021-00686-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Background Amylases produced by fungi during solid-state fermentation are the most widely used commercial enzymes to meet the ever-increasing demands of the global enzyme market. The use of low-cost substrates to curtail the production cost and reuse solid wastes are seen as viable options for the commercial production of many enzymes. Applications of α-amylases in food, feed, and industrial sectors have increased over the years. Additionally, the demand for processed and ready-to-eat food has increased because of the rapid growth of food-processing industries in developing economies. These factors significantly contribute to the global enzyme market. It is estimated that by the end of 2024, the global α-amylase market would reach USD 320.1 million (Grand View Research Inc., 2016). We produced α-amylase using Aspergillus oryzae and low-cost substrates obtained from edible oil cake, such as groundnut oil cake (GOC), coconut oil cake (COC), sesame oil cake (SOC) by solid-state fermentation. We cultivated the fungus using these nutrient-rich substrates to produce the enzyme. The enzyme was extracted, partially purified, and tested for pH and temperature stability. The effect of pH, incubation period and temperature on α-amylase production using A. oryzae was optimized. Box–Behnken design (BBD) of response surface methodology (RSM) was used to optimize and determine the effects of all process parameters on α-amylase production. The overall cost economics of α-amylase production using a pilot-scale fermenter was also studied. Results The substrate optimization for α-amylase production by the Box–Behnken design of RSM showed GOC as the most suitable substrate for A. oryzae, as evident from its maximum α-amylase production of 9868.12 U/gds. Further optimization of process parameters showed that the initial moisture content of 64%, pH of 4.5, incubation period of 108 h, and temperature of 32.5 °C are optimum conditions for α-amylase production. The production increased by 11.4% (10,994.74 U/gds) by up-scaling and using optimized conditions in a pilot-scale fermenter. The partially purified α-amylase exhibited maximum stability at a pH of 6.0 and a temperature of 55 °C. The overall cost economic studies showed that the partially purified α-amylase could be produced at the rate of Rs. 622/L. Conclusions The process parameters for enhanced α-amylase secretion were analyzed using 3D contour plots by RSM, which showed that contour lines were more oriented toward incubation temperature and pH, having a significant effect (p < 0.05) on the α-amylase activity. The optimized parameters were subsequently employed in a 600 L-pilot-scale fermenter for the α-amylase production. The substrates were rich in nutrients, and supplementation of nutrients was not required. Thus, we have suggested an economically viable process of α-amylase production using a pilot-scale fermenter.
Collapse
Affiliation(s)
- M Balakrishnan
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| | - G Jeevarathinam
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - S Kiran Santhosh Kumar
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Iniyakumar Muniraj
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| |
Collapse
|
8
|
Ojha SK, Singh PK, Mishra S, Pattnaik R, Dixit S, Verma SK. Response surface methodology based optimization and scale-up production of amylase from a novel bacterial strain, Bacillus aryabhattai KIIT BE-1. ACTA ACUST UNITED AC 2020; 27:e00506. [PMID: 32742945 PMCID: PMC7388185 DOI: 10.1016/j.btre.2020.e00506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
Abstract
A novel strain KIIT BE-1 isolated from a specialized environment, screened through starch iodine test from a set of eighty-five biodigestate isolates, produced amylase maximally when cultured for 48 h at 37 °C. The molecular and biochemical characterization confirmed it as a strain of Bacillus aryabhattai. It exhibited optimal amylase activity (3.20 U/ml) at 36 h post incubation with a media combination of starch and yeast extract for C-N source respectively. Statistical optimisation by response surface modeling showed R2 values of 0.9645 for biomass and 0.9831 for amylase activity, suggesting the significance of the model. The optimised medium (10.25 % starch, 5.0 % peptone, 5.18 % yeast extract, pH 7.3) enhanced the enzyme activity to 4.16 U/ml (1.39-fold) from 3.20 U/ml of un-optimised medium. Further, the biomass yield and the enzymatic activity in optimized medium and process conditions increased by 1.14 and 1.21 folds subjected to a 5 l scaled-up operation in a lab-scale bioreactor.
Collapse
Affiliation(s)
- Sanjay Kumar Ojha
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar, 751 024, India.,Pandorum Technologies Pvt. Ltd., Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City Phase 1, Bengaluru, 560 100, India
| | - Puneet Kumar Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar, 751 024, India
| | - Snehasish Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar, 751 024, India
| | - Ritesh Pattnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar, 751 024, India
| | - Shubha Dixit
- School of Pharmacy, Lloyd Institute of Management and Technology, PlotNo.11, Knowledge Park II, Greater Noida, 201310, India
| | - Suresh K Verma
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar, 751 024, India
| |
Collapse
|
9
|
In Silico Study and Optimization of Bacillus megaterium alpha-Amylases Production Obtained from Honey Sources. Curr Microbiol 2020; 77:2593-2601. [PMID: 32424606 DOI: 10.1007/s00284-020-02019-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to screen alpha-amylase producing microorganisms from honey as a low water activity medium, a suitable source for selecting stable and cost-beneficial bacterial enzyme production systems. Plackett-Burman method was used to select twelve effective factors including pH, inoculum size, temperature, time, corn starch, KH2PO4, peptone, MgSO4, CaCl2, NaCl, glycerin, and yeast extract concentrations on bacterial alpha-amylases production yield. The Box-Behnken method was utilized to optimize the level of selected significant factors. The stability of bacterial alpha-amylases was also determined in low pH and high-temperature conditions. In addition, in silico study was used to create the alpha-amylase structure and study the stability in high-temperature and low water available condition. Among all isolated and characterized microorganisms, Bacillus megaterium produced the highest amount of alpha-amylases. The in silico data showed the enzyme 3D structure similarity to alpha-amylase from Halothermothrix orenii and highly negative charge amino acids on its surface caused the enzyme activity and stability in low water conditions. Based on Box-Behnken results, the temperature 35 °C, pH 6 and starch 40 g/l were determined as the optimum level of significant factors to achieve the highest alpha-amylases unit (101.44 U/ml). This bacterial alpha-amylases enzyme showed stability at pH 5 and a range of temperatures from 40 to 60 °C that indicates this enzyme may possess the potential for using in industrial processes.
Collapse
|
10
|
Elyasi Far B, Ahmadi Y, Yari Khosroshahi A, Dilmaghani A. Microbial Alpha-Amylase Production: Progress, Challenges and Perspectives. Adv Pharm Bull 2020; 10:350-358. [PMID: 32665893 PMCID: PMC7335993 DOI: 10.34172/apb.2020.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/23/2019] [Accepted: 11/09/2019] [Indexed: 11/24/2022] Open
Abstract
Alpha-amylase reputes for starch modification by breaking of 1-4 glycosidic bands and is widely applied in different industrial sectors. Microorganisms express unique alpha-amylases with thermostable and halotolerant characteristics dependent on the microorganism’s intrinsic features. Likewise, genetic engineering methods are applied to produce enzymes with higher stability in contrast to wild types. As there are widespread application of α-amylase in industry, optimization methods like RSM are used to improve the production of the enzyme ex vivo. This study aimed to review the latest researches on the production improvement and stability of α-amylase.
Collapse
Affiliation(s)
- Babak Elyasi Far
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yassin Ahmadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroshahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azita Dilmaghani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Soy S, Nigam VK, Sharma SR. Cellulolytic, amylolytic and xylanolytic potential of thermophilic isolates of Surajkund hot spring. J Biosci 2019; 44:124. [PMID: 31719233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A total of 41 isolates were obtained from various samples (soil, mud, and water) of Surajkund hot spring, Jharkhand, at three different isolation temperatures of 50°C, 60°C, and 70°C. However, our interest was in the thermophilic strains that were isolated at 60°C and 70°C. Four isolates at 70°C (BITSNS038, BITSNS039, BITSNS040, BITSNS041) are the producers of thermozymes, namely amylase, xylanase, and cellulase, respectively. The highlights of the present study also showed that three out of four isolates demonstrated all three enzymatic activities, i.e. amylolytic, xylanolytic and cellulolytic on agar plate assay conditions at 70°C. One of the isolates, BITSNS038, was further chosen for phenotypic characterization as well as 16S rRNA gene sequencing and was affiliated to Geobacillus icigianus. The presence of Geobacillus icigianus was reported first time from hot spring, Surajkund, which showed amylolytic index of 1.58, xylanolytic index of 1.5 and cellulolytic index of 2.3 based on plate assay, and amylase activity of 0.81 U/mL, xylanase activity of 0.72 U/mL and very less cellulase activity of 0.15 U/mL after 24 h of growth in submerged conditions. One isolate at 60°C BITSNS024 was found to exhibit maximum amylase activity with an enzymatic index value of 3.5 and was identified as Anoxybacillus gonensis.
Collapse
Affiliation(s)
- Snehi Soy
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, India
| | | | | |
Collapse
|
12
|
Cellulolytic, amylolytic and xylanolytic potential of thermophilic isolates of Surajkund hot spring. J Biosci 2019. [DOI: 10.1007/s12038-019-9938-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Trabelsi S, Ben Mabrouk S, Kriaa M, Ameri R, Sahnoun M, Mezghani M, Bejar S. The optimized production, purification, characterization, and application in the bread making industry of three acid-stable alpha-amylases isoforms from a new isolated Bacillus subtilis strain US586. J Food Biochem 2019; 43:e12826. [PMID: 31353531 DOI: 10.1111/jfbc.12826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/10/2023]
Abstract
A new alpha-amylase-producing strain was assigned as Bacillus subtilis US586. The used statistical methodology indicated that amylase production was enhanced by 5.3 folds. The crude enzyme analysis proved the presence of three amylases isoforms Amy1, Amy2, and Amy3 called Amy586. The purified amylases had molecular masses of 48, 52, and 68 kDa with a total specific activity of 2,133 U/mg. Amy586 generated maltose, maltotriose, and maltopentaose as main final products after starch hydrolysis. It exhibited a large 4-6 optimal pH, a 60°C temperature activity, and a moderate thermostability. Amy586 displayed a high pH stability ranging from 3.5 to 6. The addition of Amy586 to weak wheat flour decreased its P/L ratio from 1.9 to 1.2 and increased its dough baking strength (W) from 138 × 10-4 to 172 × 10-4 J. Amy586 also improved the bread texture parameters by reducing its firmness and boosting the cohesion and elasticity values. PRACTICAL APPLICATIONS: Bacterial alpha-amylases with novel properties have been the major extent of recent research. In this paper, we managed to demonstrate that the addition of a purified amylolytic extract from the new isolated Bacillus subtilis strain US586 to weak local flour improves dough rheological proprieties and bread quality. Therefore, Amy586 can be considered as a bread making improver.
Collapse
Affiliation(s)
- Sahar Trabelsi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Sameh Ben Mabrouk
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Mouna Kriaa
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Rihab Ameri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Mouna Sahnoun
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Monia Mezghani
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
14
|
Frantz SC, Paludo LC, Stutz H, Spier MR. Production of amylases from Coprinus comatus under submerged culture using wheat-milling by-products: Optimization, kinetic parameters, partial purification and characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Uhoraningoga A, Kinsella GK, Henehan GT, Ryan BJ. The Goldilocks Approach: A Review of Employing Design of Experiments in Prokaryotic Recombinant Protein Production. Bioengineering (Basel) 2018; 5:E89. [PMID: 30347746 PMCID: PMC6316313 DOI: 10.3390/bioengineering5040089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
The production of high yields of soluble recombinant protein is one of the main objectives of protein biotechnology. Several factors, such as expression system, vector, host, media composition and induction conditions can influence recombinant protein yield. Identifying the most important factors for optimum protein expression may involve significant investment of time and considerable cost. To address this problem, statistical models such as Design of Experiments (DoE) have been used to optimise recombinant protein production. This review examines the application of DoE in the production of recombinant proteins in prokaryotic expression systems with specific emphasis on media composition and culture conditions. The review examines the most commonly used DoE screening and optimisation designs. It provides examples of DoE applied to optimisation of media and culture conditions.
Collapse
Affiliation(s)
| | | | - Gary T Henehan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| | - Barry J Ryan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| |
Collapse
|
16
|
Optimization, kinetic and bioprocess parameters of amylases production from Coprinus comatus under submerged culture using starch-based simple medium: Partial enzyme characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Zhoukun L, Jiale W, Ting W, Wenwen Z, Yan Q, Yan H, Zhongli C. Efficient Production and Characterization of Maltohexaose-Forming α-Amylase AmyM Secreted From the Methylotrophic YeastPichia pastoris. STARCH-STARKE 2018. [DOI: 10.1002/star.201700312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li Zhoukun
- Key Laboratory of Agricultural Environmental Microbiology; Ministry of Agriculture; College of Life Science; Nanjing Agricultural University; Nanjing 210095 P.R. China
| | - Wu Jiale
- Key Laboratory of Agricultural Environmental Microbiology; Ministry of Agriculture; College of Life Science; Nanjing Agricultural University; Nanjing 210095 P.R. China
| | - Wang Ting
- Key Laboratory of Agricultural Environmental Microbiology; Ministry of Agriculture; College of Life Science; Nanjing Agricultural University; Nanjing 210095 P.R. China
| | - Zheng Wenwen
- Key Laboratory of Agricultural Environmental Microbiology; Ministry of Agriculture; College of Life Science; Nanjing Agricultural University; Nanjing 210095 P.R. China
| | - Qiao Yan
- Key Laboratory of Agricultural Environmental Microbiology; Ministry of Agriculture; College of Life Science; Nanjing Agricultural University; Nanjing 210095 P.R. China
| | - Huang Yan
- Key Laboratory of Agricultural Environmental Microbiology; Ministry of Agriculture; College of Life Science; Nanjing Agricultural University; Nanjing 210095 P.R. China
| | - Cui Zhongli
- Key Laboratory of Agricultural Environmental Microbiology; Ministry of Agriculture; College of Life Science; Nanjing Agricultural University; Nanjing 210095 P.R. China
| |
Collapse
|
18
|
Mohamed L, Kettani YE, Ali A, Mohamed E, Mohamed J. Application of Response Surface Methodology for Optimization of Extracellular Glucoamylase Production by Candida guilliermondii. Pak J Biol Sci 2017; 20:100-107. [PMID: 29023000 DOI: 10.3923/pjbs.2017.100.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Glucoamylase is among the most important enzymes in biotechnology. The present study aims to determine better conditions for growth and glucoamylase production by Candida guilliermondii and to reduce the overall cost of the medium using Box-Behnken design with one central point and response surface methodology. METHODOLOGY Box-Behnken factorial design based on three levels was carried out to obtain optimal medium combination of five independent variables such as initial pH, soluble starch, CH4N2O, yeast extract and MgSO4. Forty one randomized mediums were incubated in flask on a rotary shaker at 105 rpm for 72 h at 30°C. RESULTS The production of biomass was found to be pH and starch dependent, maximum production when the starch concentration was 8 g L-1 and the initial pH was 6, while maximum glucoamylase production was found at 6.5 of initial pH, 4 g L-1 yeast extract and 6 g L-1 starch, whereas yeast extract and urea were highly significant, but interacted negatively. Box-Behnken factorial design used for the analysis of treatment combinations gave a second-order polynomial regression model with R2 = 0.976 for Biomass and R2 = 0.981 for glucoamylase. CONCLUSION The final biomass and glucoamylase activity obtained was very close to the calculated parameters according to the p-values (p<0.001), the predicted optimal parameters were confirmed and provides a basis for further studies in baking additives and in the valuation of starch waste products.
Collapse
Affiliation(s)
- Lagzouli Mohamed
- Laboratory of Agro-physiology, Biotechnologies and Quality, Sciences College, University IBN Tofail, BP 133, 14000 Kenitra, Morocco
| | - Youssfi El Kettani
- C.I.R.O.S Laboratory, Department of Mathematics, Sciences College, University IBN Tofail, BP 133, 14000 Kenitra, Morocco
| | - Aitounejjar Ali
- National Institute of Agronomic Research, P.O. Box 589, Settat 26000, Morocco
| | - Elyachioui Mohamed
- Laboratory of Agro-physiology, Biotechnologies and Quality, Sciences College, University IBN Tofail, BP 133, 14000 Kenitra, Morocco
| | - Jadal Mohamed
- Laboratory of Agro-physiology, Biotechnologies and Quality, Sciences College, University IBN Tofail, BP 133, 14000 Kenitra, Morocco
| |
Collapse
|