1
|
Huang LJ, Fang MJ, Tao H, Wang HL. Synthesis and characteristics of type 3 resistant waxy corn starch by removal of starch granule surface proteins and heat-moisture treatment. Food Chem 2025; 472:142958. [PMID: 39874702 DOI: 10.1016/j.foodchem.2025.142958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
The type 3 resistant waxy corn starch (RS3) was synthesized by removing starch granule surface proteins and subjecting it to heat-moisture treatment at -20°C, 4°C, and 25°C. Upon applying the dual modification, a significant reduction in particle size and in vitro digestion was observed, while the gelatinization enthalpy, relative crystallinity, and resistant starch content increased. Notably, RS3 treated at 4°C demonstrated the lowest digestion rate of 3.00 × 10-4 min-1 among all groups, and its relative crystallinity achieved a peak of 32.65%. Moreover, the gelatinization enthalpy and resistant starch content increased from 0.29 J/g and 77.9% to 0.79 J/g and 83.84%, respectively. These findings indicate that 4°C is the optimal retrogradation temperature for producing dual-modified RS3 with enhanced digestion resistance.
Collapse
Affiliation(s)
- Li-Jiao Huang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Meng-Jia Fang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| |
Collapse
|
2
|
Weng WF, Peng Y, Pan X, Yan J, Li XD, Liao ZY, Cheng JP, Gao AJ, Yao X, Ruan JJ, Zhou ML. Adlay, an ancient functional plant with nutritional quality, improves human health. Front Nutr 2022; 9:1019375. [PMID: 36618703 PMCID: PMC9815450 DOI: 10.3389/fnut.2022.1019375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Adlay (Coix lacryma-jobi L.), a crop closed related to maize (Zea mays L.) and sorghum (Sorghum bicolor L.), originated in tropical/subtropical regions of Asia and Africa; southwest China primary center of this plant's origin, evolution and migration. Adlay is a traditional high-value minor crop used for both medicinal and dietary purposes. Adlay has anti-tumor, anti-bacterial, anti-inflammatory, analgesic, blood sugar-lowering, and blood lipid-lowering effects. To clarify the main bioactive components and phytochemical compounds and to fully explore their utility, this review summarizes the research done on the main functional ingredients of adlay, including amino acids and proteins, oils, vitamins and minerals, polysaccharides, and polyphenols. This study also highlighted the application of genome sequencing to tailor nutrient-rich adlay cultivars and nutraceutical product development. Additionally, the acquisition of high-density genomic data combined with next-generation phenotypic analysis will undoubtedly improve our understanding of the potential genetic regulation of adlay nutraceutical traits. This review provides new insights and ideas for the research of adlay in comparison and evolutionary genomics, and a useful reference for molecular breeding and genetic improvement of this important minor crop.
Collapse
Affiliation(s)
- Wen F. Weng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yan Peng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Xin Pan
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiang D. Li
- Southwest Guizhou Institute of Karst Regional Development, Xingyi, Guizhou, China
| | - Zhi Y. Liao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jian P. Cheng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - An J. Gao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Jing J. Ruan
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Mei L. Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Zeng Y, Yang J, Chen J, Pu X, Li X, Yang X, Yang L, Ding Y, Nong M, Zhang S, He J. Actional Mechanisms of Active Ingredients in Functional Food Adlay for Human Health. Molecules 2022; 27:molecules27154808. [PMID: 35956759 PMCID: PMC9369982 DOI: 10.3390/molecules27154808] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Medicinal and food homologous adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) plays an important role in natural products promoting human health. We demonstrated the systematic actional mechanism of functional ingredients in adlay to promote human health, based on the PubMed, CNKI, Google, and ISI Web of Science databases from 1988 to 2022. Adlay and its extracts are rich in 30 ingredients with more than 20 health effects based on human and animal or cell cultures: they are anti-cancer, anti-inflammation, anti-obesity, liver protective, anti-virus, gastroprotective, cardiovascular protective, anti-hypertension, heart disease preventive, melanogenesis inhibiting, anti-allergy, endocrine regulating, anti-diabetes, anti-cachexia, osteoporosis preventive, analgesic, neuroprotecting, suitable for the treatment of gout arthritis, life extending, anti-fungi, and detoxifying effects. Function components with anti-oxidants are rich in adlay. These results support the notion that adlay seeds may be one of the best functional foods and further reveal the action mechanism of six major functional ingredients (oils, polysaccharides, phenols, phytosterols, coixol, and resistant starch) for combating diseases. This review paper not only reveals the action mechanisms of adding adlay to the diet to overcome 17 human diseases, but also provides a scientific basis for the development of functional foods and drugs for the treatment of human diseases.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
- Correspondence: or (Y.Z.); (J.H.); Tel.: +86-871-65894145 (Y.Z.)
| | - Jiazhen Yang
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China;
| | - Jia Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Xiaoying Pu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Xia Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Xiaomeng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Li’e Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Yumei Ding
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Mingying Nong
- Wenshan Academy of Agricultural Sciences, Wenshan 663099, China; (M.N.); (S.Z.)
| | - Shibao Zhang
- Wenshan Academy of Agricultural Sciences, Wenshan 663099, China; (M.N.); (S.Z.)
| | - Jinbao He
- Wenshan Academy of Agricultural Sciences, Wenshan 663099, China; (M.N.); (S.Z.)
- Correspondence: or (Y.Z.); (J.H.); Tel.: +86-871-65894145 (Y.Z.)
| |
Collapse
|
4
|
Different physicochemical properties of entirely α-glucan-coated starch from various botanical sources. Food Sci Biotechnol 2022; 31:1179-1188. [DOI: 10.1007/s10068-022-01113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
|
5
|
Li L, Su L, Hu F, Chen S, Wu J. Recombinant expression and characterization of the glycogen branching enzyme from Vibrio vulnificus and its application in starch modification. Int J Biol Macromol 2020; 155:987-994. [PMID: 31712143 DOI: 10.1016/j.ijbiomac.2019.11.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 01/14/2023]
Abstract
Resistant starch (RS) is helpful in controlling and preventing metabolic syndrome relevant diseases. However, the RS content of natural starch and modified starch produced by enzymatic method is generally low. To solve this problem, we selected the glycogen branching enzyme from Vibrio vulnificus (VvGBE) and investigated its application. Firstly, it was expressed in E. coli with the enzyme activity was 53.33 U/mL, and its optimum temperature and pH was 35 °C and 7.5, respectively. The half-life of VvGBE at 35 °C was 10 h, and the enzyme was most stable at pH 9.5. When we used the recombinant enzyme to treat corn starch, the content of RS increased by 19.41%, which was higher than that achieved with other enzymes. More specially, the conversion of slowly digestible starch to RS, which was only demonstrated in chemical modification, was accomplished. The fine structure of the modified starch was further investigated. Results showed that the number of short chains (DP < 13) increased to 90.58%, and the α-1,6 linkages ratio increased from 7.19% to 15.64%. The increase of short chains and α-1,6 linkages may contribute to high RS content. This study can provide a reference for the development of modified starch with lower digestibility.
Collapse
Affiliation(s)
- Lingling Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Fan Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
6
|
Zhang H, Wang R, Chen Z, Zhong Q. Amylopectin-Sodium Palmitate Complexes as Sustainable Nanohydrogels with Tunable Size and Fractal Dimensions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3796-3805. [PMID: 32069053 DOI: 10.1021/acs.jafc.9b06248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Starch-based nanohydrogels with polyelectrolyte characteristics may find unique applications. Herein, the branch chains of amylopectin (AP) were elongated to different extents by amylosucrase, followed by complexation with sodium palmitate (SP) to produce nanohydrogels. Modified AP (mAP) with a longer chain length displayed a better ability to complex with SP, and the mixtures exhibited nanosized particles with an average diameter ranging from 153.5 to 1049.8 nm. The gel strength of bulk nanohydrogels was dependent on the chain length of mAP and SP content, and their fractal dimension was between 1.82 and 2.45. The crystalline structure of native AP was altered from A- to B-type after chain elongation and, subsequently, to B + V-type after complexing with SP. Diffraction peaks of the complexes at 2θ of 7.5°, 12.9°, and 19.8° implied that the AP side chains formed left-handed single helices and the hydrophobic SP was entrapped in the helix cavity.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu 21422, People's Republic of China
- Department of Food Science, The University of Tennessee, 2510 River Drive, Knoxville, Tennessee 37996, United States
| | - Ren Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu 21422, People's Republic of China
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu 21422, People's Republic of China
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, 2510 River Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
7
|
Kim SY, Seo DH, Kim SH, Hong YS, Lee JH, Kim YJ, Jung DH, Yoo SH, Park CS. Comparative study on four amylosucrases from Bifidobacterium species. Int J Biol Macromol 2020; 155:535-542. [PMID: 32220644 DOI: 10.1016/j.ijbiomac.2020.03.176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
Amylosucrase (ASase) is α-glucan-producing enzyme. Four putative ASase genes (bdas, blas, bpas, and btas) were cloned from Bifidobacterium sp. and expressed in Escherichia coli. All ASases from Bifidobacterium sp. (BAS) displayed typical ASase properties with slightly different characteristics. Among the BASs studied, BdAS and BpAS showed maximal enzyme activities at 35 and 30 °C, respectively, whereas BlAS and BtAS were maximally active at higher temperatures, i.e., 45 and 50 °C, respectively. BpAS exhibited optimum pH under slightly basic conditions (pH 8.0), while BdAS, BlAS, and BtAS preferred weakly acidic conditions (pH 5.0-6.0). All BASs showed higher isomerization activities. Particularly, BlAS produced more trehalulose than turanose. Although polymerization was the highest for BtAS, BtAS synthesized α-1, 4-glucans with a lower degree of polymerization than that of the other BASs. The versatile properties of the BASs described could contribute to the efficient production of highly valuable biomaterials for the agriculture, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Sun-Young Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Se-Hyun Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yeong-Sik Hong
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jeong-Ha Lee
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ye-Jin Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong-Hyun Jung
- Bacteria Research Team, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Cheon-Seok Park
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
8
|
Seo DH, Yoo SH, Choi SJ, Kim YR, Park CS. Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase. Food Sci Biotechnol 2020; 29:1-16. [PMID: 31976122 PMCID: PMC6949346 DOI: 10.1007/s10068-019-00686-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
Amylosucrase (AS; EC 2.4.1.4) is an enzyme that has great potential in the biotechnology and food industries, due to its multifunctional enzyme activities. It can synthesize α-1,4-glucans, like amylose, from sucrose as a sole substrate, but importantly, it can also utilize various other molecules as acceptors. In addition, AS produces sucrose isomers such as turanose and trehalulose. It also efficiently synthesizes modified starch with increased ratios of slow digestive starch and resistant starch, and glucosylated functional compounds with increased water solubility and stability. Furthermore, AS produces turnaose more efficiently than other carbohydrate-active enzymes. Amylose synthesized by AS forms microparticles and these can be utilized as biocompatible materials with various bio-applications, including drug delivery, chromatography, and bioanalytical sciences. This review not only compares the gene and enzyme characteristics of microbial AS, studied to date, but also focuses on the applications of AS in the biotechnology and food industries.
Collapse
Affiliation(s)
- Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Seung-Jun Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Young-Rok Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Cheon-Seok Park
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
9
|
Lim JH, Kim HR, Choi SJ, Park CS, Moon TW. Complexation of Amylosucrase-Modified Waxy Corn Starch with Fatty Acids: Determination of Their Physicochemical Properties and Digestibilities. J Food Sci 2019; 84:1362-1370. [PMID: 31125129 DOI: 10.1111/1750-3841.14647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 11/28/2022]
Abstract
In this study, starch-lipid complexes were prepared using normal corn starch (NC) and amylosucrase-modified waxy corn starch (ASWC) with myristic acid (C14:0) and palmitic acid (C16:0). The amylosucrase modification elongated branch chains in waxy corn starch leading to an increase of apparent amylose content (29.7%) similar to that of NC (29.0%). The X-ray diffraction of starch-lipid complexes revealed a V-type pattern, a clear indication of complex formation. The ability of the ASWC to complex with fatty acids was greater than that of NC. Interestingly, the changes in relative crystallinity, thermal parameters, and digestion properties according to the complexation showed opposite patterns in NC and ASWC. This study found that the structure of ASWC contributes to the formation of starch-fatty acid complexes and suggested that the ASWC can be preferred over NC in a delivery system. PRACTICAL APPLICATION: Amylopectin has been considered to be incapable of forming complexes with fatty acids due to its short chain length and steric hindrance. Through this study, an appropriate enzymatic modification of the molecular structures of waxy starches could make a complexation of waxy starches with fatty acids possible. The findings of this study suggest a promising perspective for utilization of waxy starch as a carrier material of lipophilic molecules.
Collapse
Affiliation(s)
- Joo Hee Lim
- Dept. of Agricultural Biotechnology, Seoul National Univ., Seoul, 08826, Republic of Korea
| | - Ha Ram Kim
- Dept. of Agricultural Biotechnology, Seoul National Univ., Seoul, 08826, Republic of Korea
| | - Seung Jun Choi
- Dept. of Food Science and Technology, Seoul National Univ. of Science and Technology, Seoul, 01811, Republic of Korea
| | - Cheon-Seok Park
- Dept. of Food Science and Biotechnology, Kyunghee Univ., Yongin, 17104, Republic of Korea
| | - Tae Wha Moon
- Dept. of Agricultural Biotechnology, Seoul National Univ., Seoul, 08826, Republic of Korea.,Center for Food and Bioconvergence, and Research Inst. of Agriculture and Life Sciences, Seoul National Univ., Seoul, 08826, Korea
| |
Collapse
|
10
|
Tian Y, Xu W, Zhang W, Zhang T, Guang C, Mu W. Amylosucrase as a transglucosylation tool: From molecular features to bioengineering applications. Biotechnol Adv 2018; 36:1540-1552. [PMID: 29935268 DOI: 10.1016/j.biotechadv.2018.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 02/04/2023]
Abstract
Amylosucrase (EC 2.4.1.4, ASase), an outstanding sucrose-utilizing transglucosylase in the glycoside hydrolase family 13, can produce glucans with only α-1,4 linkages. Generally, on account of a double-displacement mechanism, ASase can catalyze polymerization, isomerization, and hydrolysis reactions with sucrose as the sole substrate, and has transglycosylation capacity to attach glucose molecules from sucrose to extra glycosyl acceptors. Based on extensive enzymology research, this review presents the characteristics of various ASases, including their microbial metabolism, preparation, and enzymatic properties, and exhibits structure-based strategies in the improvement of activity, specificity, and thermostability. As a vital transglucosylation tool of producing sugars, carbohydrate-based bioactive compounds, and materials, the bioengineering applications of ASases are also systematically summarized.
Collapse
Affiliation(s)
- Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Nam SM, Kim HR, Choi SJ, Park CS, Moon TW. Effects of temperature-cycled retrogradation on properties of amylosucrase-treated waxy corn starch. Cereal Chem 2018. [DOI: 10.1002/cche.10059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sae Mi Nam
- Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
| | - Ha Ram Kim
- Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
| | - Seung Jun Choi
- Department of Food Science and Technology; Seoul National University of Science and Technology; Seoul Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology; Institute of Life Science and Resources; Kyung Hee University; Yongin Korea
| | - Tae Wha Moon
- Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
- Center for Food and Bioconvergence; Research Institute for Agriculture and Life Sciences; Seoul National University; Seoul Korea
| |
Collapse
|
12
|
Park SH, Na Y, Kim J, Kang SD, Park KH. Properties and applications of starch modifying enzymes for use in the baking industry. Food Sci Biotechnol 2018; 27:299-312. [PMID: 30263753 PMCID: PMC6049653 DOI: 10.1007/s10068-017-0261-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022] Open
Abstract
Enzyme technology has many potential applications in the baking industry because carbohydrate-active enzymes specifically react with carbohydrate components, such as starch, in complex food systems. Amylolytic enzymes are added to starch-based foods, such as baking products, to retain moisture more efficiently and to increase softness, freshness, and shelf life. The major reactions used to modify the structure of food starch include: (1) hydrolysis of α-1, 4 or α-1, 6 glycosidic linkages, (2) disproportionation by the transfer of glucan moieties, and (3) branching by formation of α-1, 6 glycosidic linkage. The catalytic reaction of a single enzyme or a mixture of more than two enzymes has been applied, generating novel starches, with chemical changes in the starch structure, in which the changes of molecular mass, branch chain length distribution, and the ratio of amylose to amylopectin may occur. These developments of enzyme technology highlight the potential to create various structured-starches for the food and baking industry.
Collapse
Affiliation(s)
- Sung Hoon Park
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Yerim Na
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Jungwoo Kim
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Shin Dal Kang
- Research Institute of Food and Biotechnology, SPC Group, Seoul, 08826 Korea
| | - Kwan-Hwa Park
- Center for Food and Bioconvergence and Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
13
|
Kim HI, Kim HR, Choi SJ, Park CS, Moon TW. Preparation and characterization of the inclusion complexes between amylosucrase-treated waxy starch and palmitic acid. Food Sci Biotechnol 2017; 26:323-329. [PMID: 30263546 PMCID: PMC6049435 DOI: 10.1007/s10068-017-0044-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/31/2016] [Accepted: 01/01/2017] [Indexed: 11/29/2022] Open
Abstract
Amylosucrase-treated waxy corn starch (AS) was produced to extend the chain length of amylopectin to a great extent in comparison to its native chain length. An amylopectin-palmitic acid (PA) complex was prepared by heat-treating (121°C) a starch/PA mixture and its subsequent further incubation (95°C, 24 h); moreover, its structure and digestibility were studied. Unmodified waxy starch could not complex at all, whereas elongation due to amylosucrase modification allowed amylopectin to form a complex with PA to a small extent. Complexation between AS and PA caused a decrease in relative crystallinity. The AS-PA complex displayed an endothermic peak representing type I inclusion complexes rather than type II complexes. The formation of complexes did not significantly affect the in vitro digestibility maintaining the low digestibility of AS resulting from extremely small amounts of complexes and the type of complex.
Collapse
Affiliation(s)
- Hye In Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Korea
| | - Ha Ram Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Korea
| | - Seung Jun Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Cheon-Seok Park
- Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin, Gyeonggi, 17104 Korea
| | - Tae Wha Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Korea
- Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
14
|
Park CS, Park I. The structural characteristics of amylosucrase-treated waxy corn starch and relationship between its in vitro digestibility. Food Sci Biotechnol 2017; 26:381-387. [PMID: 30263554 PMCID: PMC6049424 DOI: 10.1007/s10068-017-0052-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022] Open
Abstract
The glucotransferase amylosucrase (AS) influences the structural properties of starch, but its precise effects are unclear. The structural characteristics and in vitro digestibility of waxy corn starch modified by AS from Neisseria polysaccharea were examined. AS-treated starch exhibited a higher slowly digestible starch (SDS) fraction, the weak B-type polymorph, lower relative crystallinity, and lower double helix content than those of native starches based on X-ray diffractometry, solid-state 13C CP/MAS NMR, and FT-IR. AS-treated starches exhibited increased proportions of degree of polymerization (DP) 25-36 and DP≥37 chains. Higher SDS and resistant (RS) fractions, higher proportions of DP 25-36 and DP≥37 chains, more double helices, higher relative crystallinity, and less difference between double helix and relative crystallinity were observed for starch treated with 460 U than with 230 U of AS. AS re-built the double-helical and rearranged crystalline structure of gelatinized starch and consequently influenced the SDS and RS fractions.
Collapse
Affiliation(s)
- Cheon-Seok Park
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Gyeonggi, 17104 Korea
| | - Inmyoung Park
- Department of Asian Food and Culinary Art, Youngsan University, Busan, 48015 Korea
| |
Collapse
|
15
|
Wang Y, Xu W, Bai Y, Zhang T, Jiang B, Mu W. Identification of an α-(1,4)-Glucan-Synthesizing Amylosucrase from Cellulomonas carboniz T26. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2110-2119. [PMID: 28240031 DOI: 10.1021/acs.jafc.6b05667] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amylosucrase, catalyzing the synthesis of α-(1,4)-glucan from sucrose, has been widely studied and used in carbohydrate biotransformation because of its versatile activities. In this study, a novel amylosucrase was characterized from Cellulomonas carboniz T26. The recombinant enzyme was overexpressed in Escherchia coli and purified by nickel affinity chromatography. It was determined to be a monomeric protein with a molecular mass of 72 kDa. The optimum pH and temperature for transglucosylation were measured to be pH 7.0 and 40 °C. The transglucosylation activity was significantly higher than the hydrolytic activity. The main product generated from sucrose was structurally determined to be α-(1,4)-glucan. A small amount of glucose was produced by hydrolysis, and sucrose isomers including turanose and trehalulose were generated as minor products. The ratio of hydrolytic, polymerization, and isomerization reactions was calculated to be 5.8:84.0:10.2. The enzyme favored production of long-chain insoluble α-glucan at lower temperature.
Collapse
Affiliation(s)
- Yongchun Wang
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology and ‡Ministry of Education, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University , Wuxi, 214122, Jiangsu China
| |
Collapse
|
16
|
Kim JH, Kim HR, Choi SJ, Park CS, Moon TW. Production of an in Vitro Low-Digestible Starch via Hydrothermal Treatment of Amylosucrase-Modified Normal and Waxy Rice Starches and Its Structural Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5045-5052. [PMID: 27228544 DOI: 10.1021/acs.jafc.6b01055] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We investigated dual modification of normal and waxy rice starch, focusing on digestibility. Amylosucrase (AS) was applied to maximize the slowly digestible and resistant starch fractions. AS-modified starches were adjusted to 25-40% moisture levels and heated at 100 °C for 40 min. AS-modified starches exhibited a B-type crystalline structure, and hydrothermal treatment (HTT) significantly (p < 0.05) increased the relative crystallinity with moisture level. The thermal transition properties of modified starches were also affected by the moisture level. The contents of rapidly digestible starch fraction in AS-modified normal and waxy starches (43.3 ± 3.9 and 18.1 ± 0.6%) decreased to 13.0 ± 1.0 and 0.3 ± 0.3% after HTT, accordingly increasing the low digestible fractions. Although the strengthened crystalline structures of AS-modified starches by HTT were not stable enough to maintain their rigidity under cooking, application of AS and HTT was more effective in waxy rice starch than normal rice starch when lowering digestibility.
Collapse
Affiliation(s)
- Ji Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University , Seoul 08826, Republic of Korea
| | - Ha Ram Kim
- Department of Agricultural Biotechnology, Seoul National University , Seoul 08826, Republic of Korea
| | - Seung Jun Choi
- Department of Food Science and Technology, Seoul National University of Science and Technology , Seoul 01811, Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Kyung Hee University , Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Tae Wha Moon
- Department of Agricultural Biotechnology, Seoul National University , Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University , Seoul 08826, Republic of Korea
| |
Collapse
|