1
|
Bianchi F, Avesani M, Lorenzini M, Zapparoli G, Simonato B. Fermentation Performances and Aroma Contributions of Selected Non- Saccharomyces Yeasts for Cherry Wine Production. Foods 2024; 13:2455. [PMID: 39123646 PMCID: PMC11312165 DOI: 10.3390/foods13152455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
This study evaluates the fermentation performances of non-Saccharomyces strains in fermenting cherry must from Italian cherries unsuitable for selling and not intended to be consumed fresh, and their effects on the chemical composition of the resulting wine. Fermentation trials in 100 and 500 mL of must were carried out to select 21 strains belonging to 11 non-Saccharomyces species. Cherry wines obtained by six select strains were chemically analyzed for fixed and volatile compounds. Quantitative data were statistically analyzed by agglomerative hierarchical clustering, partial least squared discriminant analysis, and principal component analysis. Wines revealed significant differences in their composition. Lactic acid and phenylethyl acetate levels were very high in wines produced by Lachancea and Hanseniaspora, respectively. Compared to S. cerevisiae wine, non-Saccharomyces wines had a lower content of fatty acid ethyl esters 4-vinyl guaiacol and 4-vinyl phenol. The multivariate analysis discriminated between wines, demonstrating the different contributions of each strain to aroma components. Specifically, all wines from non-Saccharomyces strains were kept strictly separate from the control wine. This study provided comprehensive characterization traits for non-conventional strains that enhance the aroma complexity of cherry-based wine. The use of these yeasts in cherry wine production appears promising. Further investigation is required to ascertain their suitability for larger-scale fermentation.
Collapse
Affiliation(s)
- Federico Bianchi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| | - Michele Avesani
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| | | | - Giacomo Zapparoli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| | - Barbara Simonato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| |
Collapse
|
2
|
Tarko T, Duda A. Volatilomics of Fruit Wines. Molecules 2024; 29:2457. [PMID: 38893332 PMCID: PMC11173689 DOI: 10.3390/molecules29112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Volatilomics is a scientific field concerned with the evaluation of volatile compounds in the food matrix and methods for their identification. This review discusses the main groups of compounds that shape the aroma of wines, their origin, precursors, and selected metabolic pathways. The paper classifies fruit wines into several categories, including ciders and apple wines, cherry wines, plum wines, berry wines, citrus wines, and exotic wines. The following article discusses the characteristics of volatiles that shape the aroma of each group of wine and the concentrations at which they occur. It also discusses how the strain and species of yeast and lactic acid bacteria can influence the aroma of fruit wines. The article also covers techniques for evaluating the volatile compound profile of fruit wines, including modern analytical techniques.
Collapse
Affiliation(s)
- Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland;
| | | |
Collapse
|
3
|
Ribeiro SG, Martins C, Tavares T, Rudnitskaya A, Alves F, Rocha SM. Volatile Composition of Fortification Grape Spirit and Port Wine: Where Do We Stand? Foods 2023; 12:2432. [PMID: 37372643 DOI: 10.3390/foods12122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Port wine's prominence worldwide is unequivocal and the grape spirit, which comprises roughly one fifth of the total volume of this fortified wine, is also a contributor to the recognized quality of this beverage. Nonetheless, information about the influence of the grape spirit on the final aroma of Port wine, as well as its volatile composition, is extremely limited. Moreover, the aroma characteristics of Port wines are modulated mainly by their volatile profiles. Hence, this review presents a detailed overview of the volatile composition of the fortification spirit and Port wine, along with the methodologies employed for their characterization. Moreover, it gives a general overview of the Douro Demarcated Region (Portugal) and the relevance of fortification spirit to the production of Port wine. As far as we know, this review contains the most extensive database on the volatile composition of grape spirit and Port wine, corresponding to 23 and 208 compounds, respectively. To conclude, the global outlook and future challenges are addressed, with the position of the analytical coverage of the chemical data on volatile components discussed as crucial for the innovation centered on consumer preferences.
Collapse
Affiliation(s)
- Sónia Gomes Ribeiro
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cátia Martins
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tiago Tavares
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Alisa Rudnitskaya
- Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fernando Alves
- Symington Family Estates, Vinhos S.A. Travessa Barão de Forrester, 86, 4400-034 Vila Nova de Gaia, Portugal
| | - Sílvia M Rocha
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
HS-GC-IMS and PCA to Characterize the Volatile Flavor Compounds in Three Sweet Cherry Cultivars and Their Wines in China. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249056. [PMID: 36558197 PMCID: PMC9781699 DOI: 10.3390/molecules27249056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
The aim of this research was to characterize differences and sources of volatile flavor compounds by using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and principal component analysis (PCA). Three sweet cherry fruits from different cultivars (cv. Tie, Van, and Lap) and their wines that were produced by the same yeast were detected. The results showed that 27 flavor compounds were identified in cherry fruits, including 10 alcohols, 7 esters, 7 aldehydes, 2 ketones, and 1 organic acid. Twenty-three flavor compounds were identified in cherry wines, including nine esters, eight alcohols, three aldehydes, two organic acids, and one ketone. In cherry fruits, aldehydes, several alcohols, and one ketone were the most prevalent in cv. Tie, and the majority of esters and alcohols in cv. Van. After fermentation, ethanol, butanol, butanal, ethyl propionate, propionaldehyde, 3-hydroxy-2-butanone, and acetic acid increased, whereas 1-hexanol, 3-methyl-3-buten-1-ol, 1-penten-3-ol, ethyl acetate, methyl acetate, (E)-2-hexenal and hexanal decreased. Few differences were detected in the type and content of volatile compounds in cherry wines from cv. Tieton (WT) and cv. Van (WV). Almost all aldehydes are derived from cherry fruits, which cannot be produced during wine-making, and other volatile compounds are almost all produced by saccharomyces cerevisiae. The volatile compounds of cherry wines were determined by row materials and fermentation cultures. Flavor fingerprints were established by HS-GC-IMS and PCA, which provided a theoretical foundation for the evaluation and improvement of flavor quality in cherry wine-making.
Collapse
|
5
|
Abstract
The fragrance field of perfumes has attracted considerable scientific, industrial, cultural, and civilizational interest. The marine odor is characterized by the specific smell of sea breeze, seashore, algae, and oyster, among others. Marine odor is a more recent fragrance and is considered as one of the green and modern fragrances. The smells reproducing the marine environment are described due to their content of Calone 1951 (7-methyl-2H-1,5-benzodioxepin-3(4H)-one), which is a synthetic compound. In addition to the synthetic group of benzodioxepanes, such as Calone 51 and its derivatives, three other groups of chemical compounds seem to represent the marine smell. The first group includes the polyunsaturated cyclic ((+)-Dictyopterene A) and acyclic (giffordene) hydrocarbons, acting as pheromones. The second group corresponds to polyunsaturated aldehydes, such as the (Z,Z)-3,6-nonadienal, (E,Z)-2,6-nonadienal, which are most likely derived from the degradation of polyunsaturated fatty acids. The third group is represented by small molecules such as sulfur compounds and halogenated phenols which are regarded as the main flavor compounds of many types of seafood. This review exposes, most notably, the knowledge state on the occurrence of marine ingredients in fragrance. We also provide a detailed discussion on several aspects of essential oils, which are the most natural ingredients from various marine sources used in fragrance and cosmetics, including synthetic and natural marine ingredients.
Collapse
|
6
|
Cheng Y, Li P, Hu B, Xu L, Liu S, Yu H, Guo Y, Xie Y, Yao W, Qian H. Correlation analysis reveals the intensified fermentation via Lactobacillus plantarum improved the flavor of fermented noni juice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Zhang MJ, Chen Y, Liu JD, Li K, Li JB. Comparison of LLE and SPME Methods for Screening the Aroma Compounds in Rum. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1937472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ming-jun Zhang
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, Nanning, China
| | - Yu Chen
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, Nanning, China
| | - Ji-dong Liu
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, Nanning, China
- Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi, Nanning, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, Nanning, China
- Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi, Nanning, China
| | - Jian-bin Li
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, Nanning, China
- Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi, Nanning, China
| |
Collapse
|
8
|
Buljeta I, Pichler A, Ivić I, Šimunović J, Kopjar M. Encapsulation of Fruit Flavor Compounds through Interaction with Polysaccharides. Molecules 2021; 26:molecules26144207. [PMID: 34299482 PMCID: PMC8304777 DOI: 10.3390/molecules26144207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Production and storage, the influence of packaging materials and the presence of other ingredients in fruit products can cause changes in flavor compounds or even their loss. Due to these issues, there is a need to encapsulate flavor compounds, and polysaccharides are often used as efficient carriers. In order to achieve effective encapsulation, satisfactory retention and/or controlled release of flavor compounds, it is necessary to understand the nature of the coated and coating materials. Interactions that occur between these compounds are mostly non-covalent interactions (hydrogen bonds, hydrophobic interactions and van der Waals forces); additionally, the formation of the inclusion complexes of flavor compounds and polysaccharides can also occur. This review provides insight into studies about the encapsulation of flavor compounds, as well as basic characteristics of encapsulation such as the choice of coating material, the effect of various factors on the encapsulation efficiency and an explanation of the nature of binding.
Collapse
Affiliation(s)
- Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
| | - Ivana Ivić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
- Correspondence:
| |
Collapse
|
9
|
Su Z, Liu B, Ma C. Analyses of the volatile compounds in cherry wine during fermentation and aging in bottle using HS-GC-IMS. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zhengbo Su
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences)
| | - Baoxiang Liu
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences)
| | - Chuang Ma
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences)
| |
Collapse
|
10
|
Wang W, Fan G, Li X, Fu Z, Liang X, Sun B. Application of Wickerhamomyces anomalus in Simulated Solid-State Fermentation for Baijiu Production: Changes of Microbial Community Structure and Flavor Metabolism. Front Microbiol 2020; 11:598758. [PMID: 33329488 PMCID: PMC7728721 DOI: 10.3389/fmicb.2020.598758] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Wickerhamomyces anomalus is conducive to the synthesis of ester compounds in brewing the Chinese liquor Baijiu; esters are crucial for the quality of Baijiu. In this study, simulated solid-state fermentation for Baijiu production was used to explore whether artificial addition of W. anomalus could improve the flavor substance in Baijiu, and the underlying mechanisms. Two experimental groups were studied, in which W. anomalus Y3604 (Group A) and YF1503 (Group B) were added, respectively; in the control group (Group C), no W. anomalus was added. Adding strain Y3604 increased the content of esters in fermentation samples, especially ethyl acetate and ethyl caproate, and reduced the content of higher alcohols. Adding strain YF1503 had little effect on the ester content but decreased the content of higher alcohols. The diversity and abundance of prokaryotic genera in Group A and B samples were similar, but there were some differences compared with Group C. The correlations of genera in Group A or B samples were simple compared with group C. Although the predominant eukaryotic genera in the three groups were consistent, the abundance of each gene varied among groups. Based on our findings, bioaugmentation of Baijiu fermentation with W. anomalus will change the ethyl acetate content and cause changes in the levels of other flavor substances. We suggest that the changes in flavor substances caused by the addition of W. anomalus are mainly due to changes in the microbial community structure that result from the addition of W. anomalus.
Collapse
Affiliation(s)
- Wenhua Wang
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Guangsen Fan
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhilei Fu
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xin Liang
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
11
|
Xu Y, Minhazul KAHM, Li X. The occurrence, enzymatic production, and application of ethyl butanoate, an important flavor constituent. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Karim A. H. M. Minhazul
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| |
Collapse
|
12
|
Niu Y, Wang P, Xiao Q, Xiao Z, Mao H, Zhang J. Characterization of Odor-Active Volatiles and Odor Contribution Based on Binary Interaction Effects in Mango and Vodka Cocktail. Molecules 2020; 25:molecules25051083. [PMID: 32121112 PMCID: PMC7179107 DOI: 10.3390/molecules25051083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
Thirty-six volatile compounds, composed of 18 esters, 10 terpenes, and 8 others, were detected by headspace-solid phase microextraction (HS-SPME) equipped with gas chromatography-mass spectrometry (GC-MS) in mango and vodka cocktail. Moreover, these compounds were detected by olfactometry using aroma intensities. Comparing these compounds revealed that the aroma intensities (AIs) of limonene, 3-carene, myrcene, β-caryophyllene, and citronellyl propanoate were higher than others (AIs ≥ 4). In this context, limonene was selected as the reference compound on the basis of the strongest component model. The aim of this study was to determine the perceptual interaction between limonene and 3-carene, myrcene, β-caryophyllene, citronellyl propanoate, respectively, in a binary mixture. In addition, feller’s addition model revealed that limonene presented an addition effect when combined with 3-carene, myrcene, β-caryophyllene, and citronellyl propanoate. It could be stated that these compounds played an important role in the aroma of mango and vodka cocktail. The results demonstrated that molecular structure and the ratio between compounds affected the synergistic effect, and compounds with similar structure and aroma were more prone to undergo addition and synergy.
Collapse
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Y.N.); (P.W.); (J.Z.)
| | - Pinpin Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Y.N.); (P.W.); (J.Z.)
| | - Qing Xiao
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA;
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Y.N.); (P.W.); (J.Z.)
- Correspondence: ; Tel.: +86-021-6087-3424
| | - Haifang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Jun Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Y.N.); (P.W.); (J.Z.)
| |
Collapse
|
13
|
Niu Y, Wang P, Xiao Z, Zhu J, Sun X, Wang R. Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC-MS, GC-O, odor threshold and sensory analysis: An insight at the molecular level. Food Chem 2018; 275:143-153. [PMID: 30724180 DOI: 10.1016/j.foodchem.2018.09.102] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 11/29/2022]
Abstract
The ester aroma profiles of five Chinese cherry wines and the perceptual interaction among esters were investigated in this study. 24 esters were identified by Gas chromatography-olfactometry (GC-O) and Gas Chromatography-Mass Spectrometer (GC-MS). According to addition/omission analysis, seven volatile compounds among them were selected and studied using sensory profiling and multivariate statistic methods such as Principal Component Analysis (PCA). In sensory analysis, a significant reduction of olfactory threshold for total aromatic reconstitution was induced by the addition among each of them in Feller's additive model, which demonstrated their synergistic effects. The σ/τ plot showed that most of them were followed by a partial addition behavior. Furthermore, PCA indicated that the addition among each of them had a significant effect on fruity, floral, sweet and fermentation aroma intensity. Specifically, ethyl decanoate and methyl salicylate at sub-threshold concentrations were also likely to contribute to overall aroma. The results of perceptual interaction were mainly influenced by chemical structure and molecular polarity.
Collapse
Affiliation(s)
- Yunwei Niu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Pinpin Wang
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Zuobing Xiao
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Jiancai Zhu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Xiaoxin Sun
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Ruolin Wang
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| |
Collapse
|