1
|
Yusakul G, Jomrit J, Bacabac RG, Prasopthum A. 3D printed personalized wound dressings using a hydrophobic deep eutectic solvent (HDES)-formulated emulgel. RSC Adv 2024; 14:34175-34191. [PMID: 39469022 PMCID: PMC11513773 DOI: 10.1039/d4ra05456c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
Curcuminoids, known for their antibacterial, anti-inflammatory, and wound healing properties, face challenges in medical applications due to their limited water solubility, resulting in poor bioavailability and clinical efficacy. This study introduces a novel approach to formulating 3D printing ink for personalized wound dressings by utilizing hydrophobic deep eutectic solvents (HDES) to incorporate poorly water-soluble compounds from Curcuma longa (i.e., curcuminoids and ar-turmerone) into hydrogels. The use of HDES, comprising either acetic acid or octanoic acid combined with menthol in a 2 : 1 molar ratio, significantly improved the solubility of curcuminoid derivatives and ar-turmerone by approximately 10 to 600 times, depending on the intrinsic chemical polarities of each compound, compared to conventional extraction solvents (i.e., ethanol and water). By formulating an emulgel using HDES as the oil phase in a gelatin methacryloyl (GelMA) solution stabilized by a biocompatible surfactant, we achieved a 3D biocompatible printing ink with preserved rheological characteristics, enabling the production of personalized wound dressings using a custom-designed, syringe-based 3D printer. The emulgel constructs exhibited regulated swelling profiles, prolonged release of curcuminoids over 60 days as monitored by a Franz cell diffusion assay, and promoted human dermal fibroblast proliferation in vitro. Additionally, the emulgel components worked synergistically with curcuminoids to significantly enhance anti-biofilm activity against Staphylococcus aureus, offering an effective strategy to prevent wound infections. Our findings have demonstrated, for the first time, the formulation of biochemical ink for 3D printing harnessing HDES, providing a new pathway for developing advanced wound dressings with relatively high concentrations of poorly soluble plant bioactive compounds tailored for chronic wound management.
Collapse
Affiliation(s)
- Gorawit Yusakul
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Biomass and Oil Palm Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Juntratip Jomrit
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Rommel G Bacabac
- Medical Biophysics Group, Department of Physics, University of San Carlos Nasipit, Talamban Cebu City 6000 Philippines
| | - Aruna Prasopthum
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Biomass and Oil Palm Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| |
Collapse
|
2
|
Koh YC, Hsu HW, Ho PY, Hsu KY, Lin WS, Nagabhushanam K, Ho CT, Pan MH. Structural Variances in Curcumin Degradants: Impact on Obesity in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14786-14798. [PMID: 38902910 PMCID: PMC11228970 DOI: 10.1021/acs.jafc.4c03768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Some thermal degradants of curcuminoids have demonstrated moderate health benefits in previous studies. Feruloyl acetone (FER), recently identified as a thermal degradant of curcumin, has been previously associated with anticancer and antioxidative effects, yet its other capabilities remain unexplored. Moreover, earlier reports suggest that methoxy groups on the aromatic ring may influence the functionality of the curcuminoids. To address these gaps, an animal study was conducted to investigate the antiobesity effects of both FER and its demethoxy counterpart (DFER) on mice subjected to a high-fat diet. The results demonstrated the significant prevention of weight gain and enlargement of the liver and various adipose tissues by both samples. Furthermore, these supplements exhibited a lipid regulatory effect in the liver through the adiponectin/AMPK/SIRT1 pathway, promoted thermogenesis via AMPK/PGC-1α activation, and positively influenced gut-microbial-produced short-chain fatty acid (SCFA) levels. Notably, DFER demonstrated superior overall efficacy in combating obesity, while FER displayed a significant effect in modulating inflammatory responses. It is considered that SCFA may be responsible for the distinct effects of FER and DFER in the animal study. Future studies are anticipated to delve into the efficacy of curcuminoid degradants, encompassing toxicity and pharmacokinetic evaluations.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, 10617 Taipei, Taiwan
| | - Han-Wen Hsu
- Institute of Food Sciences and Technology, National Taiwan University, 10617 Taipei, Taiwan
| | - Pin-Yu Ho
- Institute of Food Sciences and Technology, National Taiwan University, 10617 Taipei, Taiwan
| | - Kai-Yu Hsu
- Institute of Food Sciences and Technology, National Taiwan University, 10617 Taipei, Taiwan
| | - Wei-Sheng Lin
- Institute of Food Sciences and Technology, National Taiwan University, 10617 Taipei, Taiwan
- Department of Food Science, National Quemoy University, 89250 Quemoy County, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick 08901, New Jersey, United States
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, 10617 Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 40402 Taichung City, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, 41354 Taichung City, Taiwan
| |
Collapse
|
3
|
Karabulut G, Feng H. Enhancing techno-functional attributes of plant protein and curcumin complexation: A comparative examination of Maillard conjugation induced by manothermosonication and ultrasonication. Food Chem 2024; 442:138488. [PMID: 38244438 DOI: 10.1016/j.foodchem.2024.138488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The Maillard conjugation of hemp protein with d-xylose was studied, focusing on the influence of ultrasonic waves, processing time, and pressure. Cavitation-driven processes, including ultrasonication (US) and manothermosonication (MTS), were found to impact the degree of grafting, functional characteristics, and structural alterations, affecting conjugation efficiency. The glycation of hemp protein with xylose assisted with US and MTS was investigated under varying pressures. MTS- and US-assisted glycation processes result in 4.22- and 1.64-fold higher degrees of grafting compared to the classical method within a short time frame. The MTS procedures also improved solubility (+3.6-fold), emulsion (+15-fold), and foaming (+1.7-fold) properties, especially at optimized pressure levels, compared to classical conjugates. Furthermore, the complexation of MTS-assisted conjugates with curcumin (Cur) enhanced Cur stability by more than 1.4-fold compared to the classical procedure during 20-day storage at 4 oC. The findings suggest potential applications in the pharmaceutical industry, active dairy/meat analog development, and gel formulation.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Sakarya University, 54187 Sakarya, Turkey.
| | - Hao Feng
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27401, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Suksaeree J, Monton C. Maximizing Curcuminoid Extraction from Curcuma aromatica Salisb. Rhizomes via Environmentally Friendly Microwave-Assisted Extraction Technique Using Full Factorial Design. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:4566123. [PMID: 38566754 PMCID: PMC10985645 DOI: 10.1155/2024/4566123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Curcuma aromatica Salisb. contains a high content of curcuminoids, which can be utilized for cosmetic purposes. The objective of this study was to optimize the extraction conditions of C. aromatica rhizomes in castor oil to maximize curcuminoid content using a simple and environmentally friendly microwave-assisted extraction method. A 32 full factorial design was employed, with two factors-microwave power and time-varying between 600-800 W and 30-90 s, respectively. Five responses were monitored, including extraction yield, bisdemethoxycurcumin, demethoxycurcumin, curcumin, and total curcuminoid contents. The results demonstrated that increasing microwave power and time led to an increase in all five responses. The optimal condition, which simultaneously maximized extraction yield and total curcuminoid content, was achieved at a microwave power of 800 W for 90 s. This condition resulted in an extraction yield of 71.020%, bisdemethoxycurcumin content of 0.036%, demethoxycurcumin content of 0.210%, curcumin content of 0.080%, and total curcuminoid content of 0.326%. The computer program accurately predicted the results with a percentage error of less than 2%. Stability data revealed that the total curcuminoid content remained stable with a percentage remaining above 90% when stored at 4°C, 30°C ± 75%RH, and 40°C ± 75%RH for three months. In summary, this study successfully applied a full factorial design to maximize curcuminoid extraction from C. aromatica rhizomes using an environmentally friendly microwave-assisted extraction method for cosmetic purposes.
Collapse
Affiliation(s)
- Jirapornchai Suksaeree
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Chaowalit Monton
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
- Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| |
Collapse
|
5
|
Sheng L, Wei Y, Pi C, Cheng J, Su Z, Wang Y, Chen T, Wen J, Wei Y, Ma J, Tang J, Liu H, Liu Z, Shen H, Zuo Y, Zheng W, Zhao L. Preparation and Evaluation of Curcumin Derivatives Nanoemulsion Based on Turmeric Extract and Its Antidepressant Effect. Int J Nanomedicine 2023; 18:7965-7983. [PMID: 38162571 PMCID: PMC10757808 DOI: 10.2147/ijn.s430769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose The early stage of this study verified that a turmeric extract (TUR) including 59% curcumin (CU), 22% demethoxycurcumin (DMC), and 18% bisdemethoxycurcumin (BDMC), could enhance the stability of CU and had greater antidepressant potential in vitro. The objective of the study was to develop a nano-delivery system containing TUR (TUR-NE) to improve the pharmacokinetic behavior of TUR and enhance its antidepressant effect. Methods The antidepressant potential of TUR was explored using ABTS, oxidative stress-induced cell injury, and a high-throughput screening model. TUR-NE was fabricated, optimized and characterized. The pharmacokinetic behaviors of TUR-NE were evaluated following oral administration to normal rats. The antidepressant effect of TUR-NE was assessed within chronic unpredictable mild stress model (CUMS) mice. The behavioral and biochemical indexes of mice were conducted. Results The results depicted that TUR had 3.18 and 1.62 times higher antioxidant capacity than ascorbic acid and CU, respectively. The inhibition effect of TUR on ASP+ transport was significantly enhanced compared with fluoxetine and CU. TUR-NE displayed a particle size of 116.0 ± 0.31 nm, polydispersity index value of 0.121 ± 0.007, an encapsulation rate of 98.45%, and good release and stability in cold storage. The results of pharmacokinetics indicated the AUC(0-t) of TUR-NE was 8.436 and 4.495 times higher than that of CU and TUR, while the Cmax was 9.012 and 5.452 times higher than that of CU and TUR, respectively. The pharmacodynamic study confirmed that the superior antidepressant effect of TUR-NE by significantly improving the depressant-like behaviors and elevating the content of 5-hydroxytryptamine in plasma and brain in CUMS mice. TUR-NE showed good safety with repeated administration. Conclusion TUR-NE, which had small and uniform particle size, enhanced the bioavailability and antidepressant effect of TUR. It could be a promising novel oral preparation against depression.
Collapse
Affiliation(s)
- Lin Sheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Ju Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Zhilian Su
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanyuan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuxun Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jingwen Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd. Luxian County, Luzhou City, People’s Republic of China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Hongping Shen
- Clinical Trial Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Ying Zuo
- Department of Comprehensive Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Wenwu Zheng
- Department of cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
6
|
Singh K, Adhikari B, Low J, Brennan MA, Newman L, Brennan CS, Utama-Ang N. Development, characterization, and consumer acceptance evaluation of thermally stable capsule beads containing mixed extracts of green tea and turmeric. Sci Rep 2023; 13:19299. [PMID: 37935858 PMCID: PMC10630281 DOI: 10.1038/s41598-023-46339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
The aim of this study was to investigate the ability of shell (coating) formulations comprised of alginate and glucono delta lactone (GDL) to encapsulate a mixture of green tea and turmeric extracts. Three concentrations of alginate and GDL were used at 0.5%, 0.75%, and 1%, w/v and their solid ratio was varied using a factorial design. A response surface model was applied to optimize the retention of catechin and curcuminoid contents, to determine encapsulation efficiency, and to minimize undesirable flavor and taste. Increasing the concentration of alginate and GDL significantly increased the retention of catechin and curcuminoid contents, encapsulation efficiency, and consumer acceptance (p < 0.05). The encapsulating solution containing 1% of each alginate and GDL performed the best against each criterion. The thermal treatment carried out at the boiling point of water for 15 min had a significant impact on the retention of catechin and curcuminoid content which, in the thermally-treated beads, was 5.15 and 3.85 times higher than unencapsulated, respectively. The consumer acceptance of the encapsulated beads after thermal treatment was higher than that of the unencapsulated formulations as they exhibited lesser pungent flavor and bitterness. The innovative process of thermally stable microencapsulation can produce anti-cancer activity compounds involved in functional food industrial sectors.
Collapse
Affiliation(s)
- Kanjana Singh
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | - Julia Low
- School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | | | - Lisa Newman
- School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | | | - Niramon Utama-Ang
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Cluster of High Value Products From Thai Rice and Plants for Health, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
7
|
Nguyen HT, Wu S, Ootawa T, Nguyen HC, Tran HT, Pothinuch P, Pham HTT, Do ATH, Hoang HT, Islam MZ, Miyamoto A, Nguyen HTT. Effects of Roasting Conditions on Antibacterial Properties of Vietnamese Turmeric ( Curcuma longa) Rhizomes. Molecules 2023; 28:7242. [PMID: 37959661 PMCID: PMC10647697 DOI: 10.3390/molecules28217242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Processing with heat treatment has been reported to alter several therapeutic effects of turmeric. In Vietnamese traditional medicine, turmeric has been long used for bacterial infections, and roasting techniques are sometimes applied with this material. However, there have been no studies investigating the effects of these thermal processes on the plant's antibacterial properties. Our study was therefore performed to examine the changes that roasting produced on this material. Slices of dried turmeric were further subjected to light-roasting (80 °C in 20 min) or dark-roasting (160 °C in 20 min) processes. Broth dilution and agar-well diffusion methods were applied to examine and compare the effects of ethanol extracts obtained from non-roasted, light-roasted and dark-roasted samples, on a set of 6 gram-positive and gram-negative bacteria. In both investigations, dark-roasted turmeric was significantly less antibacterial than non-roasted and light-roasted materials, as evident by the higher values of minimum inhibitory concentrations and the smaller diameters of induced inhibitory zones. In addition, dark-roasting was also found to clearly reduce curcumin contents, total polyphenol values and antioxidant activities of the extracts. These results suggest that non-roasting or light-roasting might be more suitable for the processing of turmeric materials that are aimed to be applied for bacterial infections.
Collapse
Affiliation(s)
- Hai Thanh Nguyen
- Department of Plant Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam; (H.T.N.); (H.T.T.P.); (A.T.H.D.)
| | - Siyuan Wu
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.W.); (T.O.); (M.Z.I.)
| | - Tomoki Ootawa
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.W.); (T.O.); (M.Z.I.)
| | - Hieu Chi Nguyen
- National Institute for Control of Vaccines and Biologicals, Hoang Mai District, Hanoi 128100, Vietnam; (H.C.N.); (H.T.T.)
| | - Hong Thi Tran
- National Institute for Control of Vaccines and Biologicals, Hoang Mai District, Hanoi 128100, Vietnam; (H.C.N.); (H.T.T.)
| | - Pitchaya Pothinuch
- Faculty of Food Technology, Rangsit University, 52/347 Muang-Ake Pahonyontin Road, Lak-Hok, Pathum Thani 12000, Thailand;
| | - Hang Thi Thu Pham
- Department of Plant Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam; (H.T.N.); (H.T.T.P.); (A.T.H.D.)
| | - Anh Thi Hong Do
- Department of Plant Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam; (H.T.N.); (H.T.T.P.); (A.T.H.D.)
| | - Hao Thanh Hoang
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam;
| | - Md. Zahorul Islam
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.W.); (T.O.); (M.Z.I.)
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Atsushi Miyamoto
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.W.); (T.O.); (M.Z.I.)
| | - Ha Thi Thanh Nguyen
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.W.); (T.O.); (M.Z.I.)
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam;
| |
Collapse
|
8
|
Vardhini NM, Punia J, Jat S, Pawar SD, Devi N, Radhakrishnanand P, Murty US, Saini A, Sethi KK, Kumar P. Purification and characterization of pure curcumin, desmethoxycurcumin, and bisdemethoxycurcumin from North-East India Lakadong turmeric (Curcuma longa). J Chromatogr A 2023; 1708:464358. [PMID: 37708671 DOI: 10.1016/j.chroma.2023.464358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Lakadong turmeric has been outlined for its high content of curcuminoids across the globe. Three significant molecular markers are widely present in turmeric viz, curcumin, desmethoxycurcumin, and bisdemethoxycurcumin, and they are present very high amount in Lakadong turmeric. Curcuminoids have been reported for structural and spectrum similarity of 3 to 4 nm (432, 434, and 436 nm, respectively). Current purification methods are based on recrystallisation where it is difficult to get highly pure material and preparative methods associated with tedious separation with high cost. Lakadong turmeric has not been explored commercially since long time. No reports are available in the literature with highly pure reference materials with in-depth characterization data and purity assessment. Curcumin, desmethoxycurcumin, and bisdemethoxycurcumin were characterized using different analytical techniques viz, UV-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Proton Nuclear Magnetic Resonance (1HNMR), Carbon-13 Nuclear Magnetic Resonance (13CNMR), High-Resolution Mass Spectrometry (HR-MS) and Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Purified 3 markers has shown High-Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) purity more than 99.5%. DSC the melting peaks of curcumin, desmethoxycurcumin and bisdemethoxycurcumin were observed at 168 °C, 165 °C, and 210 °C, respectively. These plant-based markers have high commercial potential as reference material for routine Quality Assurance and Quality Control (QAQC) in herbal industries.
Collapse
Affiliation(s)
- Nomula Mamatha Vardhini
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, India
| | - Jyoti Punia
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, India; Centre for GMP extraction facility, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, Assam, India
| | - Sandeep Jat
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, India
| | - Sachin D Pawar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, India
| | - Nayanika Devi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, India
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, India; Centre for GMP extraction facility, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, Assam, India
| | - Anurag Saini
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, India
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Sila Katamur (Halugurisuk), PO: Changsari, Dist: Kamrup, Assam, India.
| |
Collapse
|
9
|
Jantarawong S, Swangphon P, Lauterbach N, Panichayupakaranant P, Pengjam Y. Modified Curcuminoid-Rich Extract Liposomal CRE-SDInhibits Osteoclastogenesis via the Canonical NF-κB Signaling Pathway. Pharmaceutics 2023; 15:2248. [PMID: 37765217 PMCID: PMC10537735 DOI: 10.3390/pharmaceutics15092248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Curcuminoids, namely curcumin, demethoxycurcumin, and bisdemethoxycurcumin, are the major active compounds found in Curcuma longa L. (turmeric). Although their suppressive effects on bone resorption have been demonstrated, their pharmacokinetic disadvantages remain a concern. Herein, we utilized solid dispersion of a curcuminoid-rich extract (CRE), comprising such curcuminoids, to prepare CRE-SD; subsequently, we performed liposome encapsulation of the CRE-SD to yield liposomal CRE-SD. In vitro release assessment revealed that a lower cumulative mass percentage of CRE-SD was released from liposomal CRE-SD than from CRE-SD samples. After culture of murine RANKL-stimulated RAW 264.7 macrophages, our in vitro examinations confirmed that liposomal CRE-SD may impede osteoclastogenesis by suppressing p65 and IκBα phosphorylation, together with nuclear translocation and transcriptional activity of phosphorylated p65. Blind docking simulations showed the high binding affinity between curcuminoids and the IκBα/p50/p65 protein complex, along with many intermolecular interactions, which corroborated our in vitro findings. Therefore, liposomal CRE-SD can inhibit osteoclastogenesis via the canonical NF-κB signaling pathway, suggesting its pharmacological potential for treating bone diseases with excessive osteoclastogenesis.
Collapse
Affiliation(s)
- Sompot Jantarawong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Piyawut Swangphon
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (N.L.)
| | - Natda Lauterbach
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (N.L.)
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Yutthana Pengjam
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (N.L.)
| |
Collapse
|
10
|
Kuźmińska J, Kobyłka P, Wierzchowski M, Łażewski D, Popenda Ł, Szubska P, Jankowska W, Jurga S, Gośliński T, Muszalska-Kolos I, Murias M, Kucińska M, Sobczak A, Jelińska A. Novel fluorocurcuminoid-BF2 complexes and their unlocked counterparts as potential bladder anticancer agents – synthesis, physicochemical characterization, and in vitro anticancer activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Jain R, Dubey SK, Singhvi G. Stability indicating validated high‐performance liquid chromatography method for simultaneous estimation of chlorin e6 and curcumin in bulk and drug‐loaded lipidic nanoformulation. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rupesh Jain
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS‐PILANI) Pilani Campus India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS‐PILANI) Pilani Campus India
- Medical Research R&D Healthcare Division Emami Ltd Kolkata India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS‐PILANI) Pilani Campus India
| |
Collapse
|
12
|
Rao Z, Caprioglio D, Gollowitzer A, Kretzer C, Imperio D, Collado JA, Waltl L, Lackner S, Appendino G, Muñoz E, Temml V, Werz O, Minassi A, Koeberle A. Rotational constriction of curcuminoids impacts 5-lipoxygenase and mPGES-1 inhibition and evokes a lipid mediator class switch in macrophages. Biochem Pharmacol 2022; 203:115202. [PMID: 35932797 DOI: 10.1016/j.bcp.2022.115202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/31/2022]
Abstract
Polypharmacological targeting of lipid mediator networks offers potential for efficient and safe anti-inflammatory therapy. Because of the diversity of its biological targets, curcumin (1a) has been viewed as a privileged structure for bioactivity or, alternatively, as a pan-assay interference (PAIN) compound. Curcumin has actually few high-affinity targets, the most remarkable ones being 5-lipoxygenase (5-LOX) and microsomal prostaglandin E2 synthase (mPGES)-1. These enzymes are critical for the production of pro-inflammatory leukotrienes and prostaglandin (PG)E2, and previous structure-activity-relationship studies in this area have focused on the enolized 1,3-diketone motif, the alkyl-linker and the aryl-moieties, neglecting the rotational state of curcumin, which can adopt twisted conformations in solution and at target sites. To explore how the conformation of curcuminoids impacts 5-LOX and mPGES-1 inhibition, we have synthesized rotationally constrained analogues of the natural product and its pyrazole analogue by alkylation of the linker and/or of the ortho aromatic position(s). These modifications strongly impacted 5-LOX and mPGES-1 inhibition and their systematic analysis led to the identification of potent and selective 5-LOX (3b, IC50 = 0.038 µM, 44.7-fold selectivity over mPGES-1) and mPGES-1 inhibitors (2f, IC50 = 0.11 µM, 4.6-fold selectivity over 5-LOX). Molecular docking experiments suggest that the C2-methylated pyrazolocurcuminoid 3b targets an allosteric binding site at the interface between catalytic and regulatory 5-LOX domain, while the o, o'-dimethylated desmethoxycurcumin 2f likely binds between two monomers of the trimeric mPGES-1 structure. Both compounds trigger a lipid mediator class switch from pro-inflammatory leukotrienes to PG and specialized pro-resolving lipid mediators in activated human macrophages.
Collapse
Affiliation(s)
- Zhigang Rao
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Diego Caprioglio
- Department of Drug Science, University of Piemonte Orientale, 28100 Novara, Italy
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Daniela Imperio
- Department of Drug Science, University of Piemonte Orientale, 28100 Novara, Italy
| | - Juan A Collado
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, 14071, Cordoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004, Cordoba, Spain; Hospital Universitario Reina Sofia, 14004, Cordoba, Spain
| | - Lorenz Waltl
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Sandra Lackner
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Giovanni Appendino
- Department of Drug Science, University of Piemonte Orientale, 28100 Novara, Italy
| | - Eduardo Muñoz
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, 14071, Cordoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004, Cordoba, Spain; Hospital Universitario Reina Sofia, 14004, Cordoba, Spain
| | - Veronika Temml
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Salzburg 5020, Austria
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Alberto Minassi
- Department of Drug Science, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
13
|
Zanetti TA, Biazi BI, Coatti GC, Baranoski A, Marques LA, Corveloni AC, Mantovani MS. Dimethoxycurcumin reduces proliferation and induces apoptosis in renal tumor cells more efficiently than demethoxycurcumin and curcumin. Chem Biol Interact 2021; 338:109410. [PMID: 33582110 DOI: 10.1016/j.cbi.2021.109410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/21/2022]
Abstract
Curcumin (Cur), is a pigment with antiproliferative activity but has some pharmacokinetic limitations, which led researchers to look for more effective structure analogs. This work investigated the effects of Cur and compared them with the two analogs, demethoxycurcumin (DeMC) and dimethoxycurcumin (DiMC), to elucidate their mechanisms of action. The cytotoxic, antiproliferative, and genotoxic effects these compounds were correlated based on gene expression analysis in the human renal adenocarcinoma cells (786-O). Cur decreased CYP2D6 expression and exhibited cytotoxic effects, such as inducing monopolar spindle formation and mitotic arrest mediated by the increase in CDKN1A (p21) mRNA. This dysregulation induced cell death through a caspase-independent pathway but was mediated by decrease in MTOR and BCL2 mRNA expression, suggesting that apoptosis occurred by autophagy. DeMC and DiMC had similar effects in that they induced monopolar spindle and mitotic arrest, were genotoxic, and activated GADD45A, an important molecule in repair mechanisms, and CDKN1A. However, the induction of apoptosis by DeMC was delayed and regulated by the decrease of antiapoptotic mRNA BCL.XL and subsequent activation of caspase 9 and caspase 3/7. DiMC treatment increased the expression of CYP1A2, CYP2C19, and CYP3A4 and exhibited higher cytotoxicity compared with other compounds. It induced apoptosis by increasing mRNA expression of BBC3, MYC, and CASP7 and activation of caspase 9 and caspase 3/7. These data revealed that different gene regulation processes are involved in cell death induced by Cur, DeMC, and DiMC. All three can be considered as promising chemotherapy candidates, with DiMC showing the greatest potency.
Collapse
Affiliation(s)
- Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil.
| | - Bruna Isabela Biazi
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | | | - Adrivanio Baranoski
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Lilian Areal Marques
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Amanda Cristina Corveloni
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Mario Sergio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| |
Collapse
|
14
|
Concomitant analysis of dasatinib and curcuminoids in a pluronic-based nanoparticle formulation using a novel HPLC method. Chromatographia 2020. [DOI: 10.1007/s10337-020-03956-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Study of the effect of marination treatment on garlic bioactive compounds through an innovative HPLC-DAD-MS method for alliin and curcuminoids analysis. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Binello A, Grillo G, Barge A, Allegrini P, Ciceri D, Cravotto G. A Cross-Flow Ultrasound-Assisted Extraction of Curcuminoids from Curcuma longa L.: Process Design to Avoid Degradation. Foods 2020; 9:foods9060743. [PMID: 32512773 PMCID: PMC7353576 DOI: 10.3390/foods9060743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Rhizomes of Curcuma longa L. are well known for their content of curcuminoids, which are compounds with interesting biological activity against various inflammatory states and diseases. Curcuminoids can degrade during processing. This piece of work investigates fast, efficient and cost-effective metabolite recovery from turmeric under ultrasound-assisted extraction (UAE). An analytical evaluation of curcuminoid stability under sonication in different solvents is reported for the first time. HPLC and quantitative 1H-NMR were used. Under the applied conditions, EtOAc was found to be the optimal extraction medium, rather than EtOH, due to its lower radical generation, which facilitates better curcuminoid stability. Kinetic characterization, by means of the Peleg equation, was applied for single-step UAE on two different rhizome granulometries. Over a time of 90 min, maximum extraction yields were 25.63% and 47.56% for 6 and 2 mm matrix powders, respectively. However, it was observed that the largest portion of curcuminoid recovery was achieved in the first 30 min. Model outcomes were used as the basis for the design of a suitable multi-step cross-flow approach that supports and emphasizes the disruptive role of cavitation. The maximum curcuminoid yield was achieved over three steps (92.10%) and four steps (80.04%), for lower and higher granulometries, respectively. Finally, the central role of the solvent was further confirmed by turmeric oleoresin purification. The EtOAc extract was purified via crystallization, and a 95% pure curcuminoid product was isolated without any chromatographic procedure. No suitable crystallization was observed for the EtOH extract.
Collapse
Affiliation(s)
- Arianna Binello
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (A.B.); (G.G.); (A.B.)
| | - Giorgio Grillo
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (A.B.); (G.G.); (A.B.)
| | - Alessandro Barge
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (A.B.); (G.G.); (A.B.)
| | - Pietro Allegrini
- INDENA S.pA., Viale Ortles, 12, 20139 Milan, Italy; (P.A.); (D.C.)
| | - Daniele Ciceri
- INDENA S.pA., Viale Ortles, 12, 20139 Milan, Italy; (P.A.); (D.C.)
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (A.B.); (G.G.); (A.B.)
- Correspondence: ; Tel.: +39-011-6707183; Fax: +39-011-6707162
| |
Collapse
|
17
|
Pan H, Shen X, Tao W, Chen S, Ye X. Fabrication of Polydopamine-Based Curcumin Nanoparticles for Chemical Stability and pH-Responsive Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2795-2802. [PMID: 32031786 DOI: 10.1021/acs.jafc.9b07697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polydopamine (PDA) possesses high aqueous dispersibility, strong optical absorption, and a zwitterionic property, which give it multitudes of advantages to coat light-sensitive hydrophobic curcumin (Cur) for pH-responsive release. However, PDA is formed in alkaline conditions, which hinders its potential application for alkali-sensitive curcumin coating. Here, we developed a method to prepare PDA-coated Cur nanoparticles (NPs), which reduced chemical degradation of Cur in alkaline conditions. Encapsulation efficiency and loading capacity decreased to 73.69% and 51.80%, as the time for dopamine polymerization went on. PDA could protect Cur from light-induced degradation in powder and solution forms. Controlled release and pH-responsive delivery of PDA-coated Cur were observed under stomach and intestinal conditions compared to free Cur, which resulted from the coverage and thickness of the PDA shell and the electrostatic attraction between PDA and Cur. PDA-coated Cur NPs could be a promising way for the application of Cur in the beverage and food industry.
Collapse
Affiliation(s)
- Haibo Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xuemin Shen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenyang Tao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
18
|
Sahu PK, Panda J, Jogendra Kumar YVV, Ranjitha SK. A robust RP-HPLC method for determination of turmeric adulteration. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1722162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Prafulla Kumar Sahu
- Department of Pharmaceutical Analysis, Raghu College of Pharmacy, Visakhapatnam, Andhra Pradesh, India
| | - Jagadeesh Panda
- Department of Pharmaceutical Analysis, Raghu College of Pharmacy, Visakhapatnam, Andhra Pradesh, India
| | - Y. V. V. Jogendra Kumar
- Department of Pharmaceutical Analysis, Raghu College of Pharmacy, Visakhapatnam, Andhra Pradesh, India
| | - S. Karunya Ranjitha
- Department of Pharmaceutical Analysis, Raghu College of Pharmacy, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
19
|
Bessone F, Argenziano M, Grillo G, Ferrara B, Pizzimenti S, Barrera G, Cravotto G, Guiot C, Stura I, Cavalli R, Dianzani C. Low-dose curcuminoid-loaded in dextran nanobubbles can prevent metastatic spreading in prostate cancer cells. NANOTECHNOLOGY 2019; 30:214004. [PMID: 30654342 DOI: 10.1088/1361-6528/aaff96] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preventing recurrences and metastasis of prostate cancer after prostatectomy by administering adjuvant therapies is quite a controversial issue. In addition to effectiveness, absence of side effects and long term toxicity are mandatory. Curcuminoids (Curc) extracted with innovative techniques and effectively loaded by polymeric nanobubbles (Curc-NBs) satisfy such requirements. Curc-NBs showed stable over 30 d, were effectively internalized by tumor cells and were able to slowly release Curc in a sustained way. Significant biological effects were detected in PC-3 and DU-145 cell lines where Curc-NBs were able to inhibit adhesion and migration, to promote cell apoptosis and to affect cell viability and colony-forming capacity in a dose-dependent manner. Since the favourable effects are already detectable at very low doses, which can be reached at a clinical level, the actual drug concentration can be visualized and monitored by US or MRI, Curc-NBs can be proposed as an effective adjuvant theranostic tool.
Collapse
Affiliation(s)
- F Bessone
- Department of Drug Science & Technology, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|