1
|
Panda P, Mohapatra R. Herbal nanoparticles: a targeted approach for neurodegenerative disorder treatment. J Drug Target 2024:1-14. [PMID: 39133517 DOI: 10.1080/1061186x.2024.2391913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Nanotechnology has significantly impacted human life, particularly in overcoming the limitations associated with neurodegenerative diseases (NDs). Various nanostructures and vehicle systems, such as polymer nanoparticles, carbon nanotubes (CNTs), nanoliposomes, nano-micelles, lipid nanoparticles, lactoferrin, polybutylcyanoacrylate, and poly lactic-co-glycolic acid, have been shown to enhance drug efficacy, reduce side effects, and improve pharmacokinetics. NDs affect millions worldwide and are challenging to treat due to the blood-brain barrier (BBB), which hinders drug delivery to the central nervous system (CNS). Research suggests that natural ingredients can be formulated into nanoparticles, offering a promising approach for ND treatment. This review examines the advantages and disadvantages of herbal-based nanoformulations, highlighting their potential effectiveness when used alone or in combination with other medications. Herbal nanoparticles provide benefits over synthetic ones due to their biocompatibility, reduced toxicity, and potential for synergistic effects. The study's findings can be applied to develop more efficient drug delivery systems, improving the treatment of NDs by enhancing drug penetration across the BBB and targeting affected CNS areas more precisely.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of pharmaceutical science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of pharmaceutical science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Hussain MS, Chaturvedi V, Goyal S, Singh S, Mir RH. An Update on the Application of Nano Phytomedicine as an Emerging
Therapeutic Tool for Neurodegenerative Diseases. CURRENT BIOACTIVE COMPOUNDS 2024; 20. [DOI: 10.2174/0115734072258656231013085318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2024]
Abstract
Abstract:
The existence of the blood-brain barrier (BBB), a densely woven network of blood
vessels and endothelial cells designed to prevent the infiltration of foreign substances into the
brain, the methods employed in developing treatments for neurodegenerative disorders (NDs)
such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple sclerosis, Amyotrophic lateral sclerosis, and others, pose significant challenges and complexities. These illnesses
have had a terrible impact on the human population's health. Because early detection of these
problems is poor and no good therapy has been established, they have emerged as the biggest lifethreatening healthcare burden worldwide compared to other significant illnesses. Traditional drug
delivery techniques do not offer efficient treatment for NDs due to constraints in the BBB design,
efflux pumps, and metabolic enzyme expression. Nanotechnology has the potential to significantly enhance ND therapy by utilizing systems that have been bioengineered to engage with living
organisms at the cellular range. Compared to traditional techniques, nanotechnological technologies have several potential ways for crossing the BBB and increasing therapeutic efficacy in the
brain. The introduction and growth of nanotechnology indicate promising potential for overcoming this issue. Engineered nanoparticles coupled with therapeutic moieties and imaging agents
with dimensions ranging from 1-100 nm can improve effectiveness, cellular uptake, selective
transport, and drug delivery to the brain due to their changed physicochemical properties. Conjugates of nanoparticles and medicinal plants, or their constituents known as nano phytomedicine,
have recently gained importance in developing cutting-edge neuro-therapeutics due to their abundant natural supply, promising targeted delivery to the brain, and lower potential for adverse effects. This study summarizes the common NDs, their prevalence and pathogenesis, and potential
herbal nanoformulation for treating NDs.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Varunesh Chaturvedi
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Saloni Goyal
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Sandeep Singh
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Reyaz Hassan Mir
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and
Kashmir, 190006, India
| |
Collapse
|
3
|
Singh AK, Pal P, Pandey B, Goksen G, Sahoo UK, Lorenzo JM, Sarangi PK. Development of "Smart Foods" for health by nanoencapsulation: Novel technologies and challenges. Food Chem X 2023; 20:100910. [PMID: 38144773 PMCID: PMC10740092 DOI: 10.1016/j.fochx.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
Importance of nanotechnology may be seen by penetration of its application in diverse areas including the food sector. With investigations and advancements in nanotechnology, based on feedback from these diverse areas, ease, and efficacy are also increasing. The food sector may use nanotechnology to encapsulate smart foods for increased health, wellness, illness prevention, and effective targeted delivery. Such nanoencapsulated targeted delivery systems may further add to the economic and nutritional properties of smart foods like stability, solubility, effectiveness, safeguard against disintegration, permeability, and bioavailability of smart/bioactive substances. But in the way of application, the fabrication of nanomaterials/nanostructures has several challenges which range from figuring out the optimal technique for obtaining them to determining the most suitable form of nanostructure for a bioactive molecule of interest. This review precisely addresses concepts, recent advances in fabrication techniques as well as current challenges/glitches of nanoencapsulation with special reference to smart foods/bioactive components. Since dealing with food materials also raises the quest for safety and regulatory norms a brief overview of the safety and regulatory aspects of nanomaterials/nanoencapsulation is also presented.
Collapse
Affiliation(s)
- Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Priti Pal
- Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad, Road, Lucknow 226028, India
| | - Brijesh Pandey
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Turkey
| | | | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n◦ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| |
Collapse
|
4
|
Solnier J, Zhang Y, Roh K, Kuo YC, Du M, Wood S, Hardy M, Gahler RJ, Chang C. A Pharmacokinetic Study of Different Quercetin Formulations in Healthy Participants: A Diet-Controlled, Crossover, Single- and Multiple-Dose Pilot Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9727539. [PMID: 37600550 PMCID: PMC10435304 DOI: 10.1155/2023/9727539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
This study aimed to evaluate the blood concentrations of quercetin in healthy participants after the administration of different formulations in single- and multiple-dose phases. Ten healthy adults (males, 5; females, 5; age 37 ± 11 years) participated in a diet-controlled, crossover pilot study. Participants received three different doses (250 mg, 500 mg, or 1000 mg) of quercetin aglycone orally. In the single-dose study, blood concentrations (AUC0-24 and Cmax) of standard quercetin were compared with those of LipoMicel®-a food-grade delivery form of quercetin. In the multiple-dose study, blood concentrations of formulated quercetin were observed over 72 h, after repeated doses of LipoMicel (LM) treatments. The AUC0-24 ranged from 77.3 to 1128.9 ng·h/ml: LM significantly increased blood concentrations of quercetin by 7-fold (LM 500) compared to standard quercetin, when tested at the same dose, over 24 h (p < 0.001); LM administered at a higher dose (LM 1000) achieved 15-fold higher absorption (p < 0.001); LM tested at half a dose of standard quercetin increased concentration by approx. 3-fold (LM 250). Quercetin blood concentrations were attained over 72 h. The major metabolites measured in the blood were methylated, sulfate, and glutathione (GSH) conjugates of quercetin. Significant differences in concentrations between quercetin conjugates (sulfate vs. methyl vs. GSH) were observed (p < 0.001). Data obtained from this study suggest that supplementation with LipoMicel® is a promising strategy to increase the absorption of quercetin and its health-promoting effects in humans. However, due to the low sample size in this pilot study, further research is still warranted to confirm the observations in larger populations. This trial is registered with NCT05611827.
Collapse
Affiliation(s)
| | | | - Kyle Roh
- ISURA, Burnaby, BC V3N4S9, Canada
| | | | - Min Du
- ISURA, Burnaby, BC V3N4S9, Canada
| | - Simon Wood
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
- InovoBiologic Inc., Calgary, AB Y2N4Y7, Canada
- Food, Nutrition and Health Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Mary Hardy
- Association of Integrative and Holistic Medicine, San Diego, California, USA
| | | | | |
Collapse
|
5
|
Grilc NK, Sova M, Kristl J. Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases. Pharmaceutics 2021; 13:2137. [PMID: 34959418 PMCID: PMC8708625 DOI: 10.3390/pharmaceutics13122137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is associated with a wide range of diseases characterised by oxidant-mediated disturbances of various signalling pathways and cellular damage. The only effective strategy for the prevention of cellular damage is to limit the production of oxidants and support their efficient removal. The implication of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the cellular redox status has spurred new interest in the use of its natural modulators (e.g., curcumin, resveratrol). Unfortunately, most natural Nrf2 modulators are poorly soluble and show extensive pre-systemic metabolism, low oral bioavailability, and rapid elimination, which necessitates formulation strategies to circumvent these limitations. This paper provides a brief introduction on the cellular and molecular mechanisms involved in Nrf2 modulation and an overview of commonly studied formulations for the improvement of oral bioavailability and in vivo pharmacokinetics of Nrf2 modulators. Some formulations that have also been studied in vivo are discussed, including solid dispersions, self-microemulsifying drug delivery systems, and nanotechnology approaches, such as polymeric and solid lipid nanoparticles, nanocrystals, and micelles. Lastly, brief considerations of nano drug delivery systems for the delivery of Nrf2 modulators to the brain, are provided. The literature reviewed shows that the formulations discussed can provide various improvements to the bioavailability and pharmacokinetics of natural Nrf2 modulators. This has been demonstrated in animal models and clinical studies, thereby increasing the potential for the translation of natural Nrf2 modulators into clinical practice.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Matej Sova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Julijana Kristl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
6
|
Two- component polymer beads with magnetic features as efficient means for active principles binding. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Pateiro M, Gómez B, Munekata PES, Barba FJ, Putnik P, Kovačević DB, Lorenzo JM. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021; 26:1547. [PMID: 33799855 PMCID: PMC7999092 DOI: 10.3390/molecules26061547] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The design of functional foods has grown recently as an answer to rising consumers' concerns and demands for natural, nutritional and healthy food products. Nanoencapsulation is a technique based on enclosing a bioactive compound (BAC) in liquid, solid or gaseous states within a matrix or inert material for preserving the coated substance (food or flavor molecules/ingredients). Nanoencapsulation can improve stability of BACs, improving the regulation of their release at physiologically active sites. Regarding materials for food and nutraceutical applications, the most used are carbohydrate-, protein- or lipid-based alternatives such as chitosan, peptide-chitosan and β-lactoglobulin nanoparticles (NPs) or emulsion biopolymer complexes. On the other hand, the main BACs used in foods for health promoting, including antioxidants, antimicrobials, vitamins, probiotics and prebiotics and others (minerals, enzymes and flavoring compounds). Nanotechnology can also play notable role in the development of programmable food, an original futuristic concept promising the consumers to obtain high quality food of desired nutritive and sensory characteristics.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Belén Gómez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain;
| | - Predrag Putnik
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Vigo, Ourense, Spain
| |
Collapse
|
8
|
Jhaveri J, Raichura Z, Khan T, Momin M, Omri A. Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules 2021; 26:E272. [PMID: 33430478 PMCID: PMC7827344 DOI: 10.3390/molecules26020272] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology-based development of drug delivery systems is an attractive area of research in formulation driven R&D laboratories that makes administration of new and complex drugs feasible. It plays a significant role in the design of novel dosage forms by attributing target specific drug delivery, controlled drug release, improved, patient friendly drug regimen and lower side effects. Polysaccharides, especially chitosan, occupy an important place and are widely used in nano drug delivery systems owing to their biocompatibility and biodegradability. This review focuses on chitosan nanoparticles and envisages to provide an insight into the chemistry, properties, drug release mechanisms, preparation techniques and the vast evolving landscape of diverse applications across disease categories leading to development of better therapeutics and superior clinical outcomes. It summarizes recent advancement in the development and utility of functionalized chitosan in anticancer therapeutics, cancer immunotherapy, theranostics and multistage delivery systems.
Collapse
Affiliation(s)
- Jhanvi Jhaveri
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India; (J.J.); (Z.R.)
| | - Zarna Raichura
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India; (J.J.); (Z.R.)
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
9
|
Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM. The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Crit Rev Food Sci Nutr 2020; 62:3208-3231. [PMID: 33356489 DOI: 10.1080/10408398.2020.1863907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioactive compounds may lose their antioxidant activity (e.g., phenolic compounds) at elevated temperatures, enhanced oxidative conditions and severe light exposures so they should be protected by various strategies such as nano/microencapsulation methods. Encapsulation technology has been employed as a proper method for using antioxidant ingredients and to provide easy dispersibility of antioxidants in all matrices including food and pharmaceutical products. It can improve the food fortification processes, release of antioxidant ingredients, and extending the shelf-life and bioavailability of them when ingested in the intestine. In this study, our main goal is to have an overview of the influence of nanoencapsulation on the bioactivity and bioavailability, and cellular activities of antioxidant ingredients in different delivery systems. Also, the effect of encapsulation process conditions, storage conditions, carrier wall materials, and release profile on the antioxidant activity of different natural bioactives are explained. Finally, analytical techniques for measuring antioxidant activity of nanoencapsulated ingredients will be covered.
Collapse
Affiliation(s)
- Atefe Maqsoudlou
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hossein Mohebodini
- Department of Animal Science and Food Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
10
|
Parvez S, Yadagiri G, Karole A, Singh OP, Verma A, Sundar S, Mudavath SL. Recuperating Biopharmaceutical Aspects of Amphotericin B and Paromomycin Using a Chitosan Functionalized Nanocarrier via Oral Route for Enhanced Anti-leishmanial Activity. Front Cell Infect Microbiol 2020; 10:570573. [PMID: 33178626 PMCID: PMC7593694 DOI: 10.3389/fcimb.2020.570573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
The design and development of new pharmaceutical formulations for the existing anti-leishmanial is a new strategic alternate to improve efficacy and safety rather than new drug discovery. Herein hybrid solid lipid nanoparticles (SLN) have been engineered to direct the oral delivery of two anti-leishmanial drugs amphotericin B (AmB) and paromomycin (PM). The combinatorial nanocarriers consist of conventional SLN, antileishmanial drugs (AmB and PM) which have been functionalized with chitosan (Cs) grafted onto the external surface. The Cs-SLN have the mean particle size of 373.9 ± 1.41 nm, polydispersity index (PDI) of 0.342 ± 0.02 and the entrapment efficiency for AmB and PM was found to be 95.20 ± 3.19% and 89.45 ± 6.86 %, respectively. Characterization of SLN was performed by scanning electron microscopy and transmission electron microscopy. Complete internalization of the formulation was observed in Caco-2 cells. Cs-SLN has shown a controlled and slow drug release profile over a period of 72 h and was stable at gastrointestinal fluids, confirmed by simulated gastro-intestinal fluids study. Cs coating enhanced the mucoadhesive property of Cs-SLN. The in-vitro anti-leishmanial activity of Cs-SLN (1 μg/ml) has shown a maximum percentage of inhibition (92.35%) on intra-cellular amastigote growth of L. donovani.
Collapse
Affiliation(s)
- Shabi Parvez
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Mohali, India
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Mohali, India
| | - Archana Karole
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Mohali, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anurag Verma
- School of Pharmaceutical Sciences, Institute of Foreign Trade and Management (IFTM) University, Moradabad, India.,Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University (TMU), Moradabad, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Mohali, India
| |
Collapse
|
11
|
Moradi SZ, Momtaz S, Bayrami Z, Farzaei MH, Abdollahi M. Nanoformulations of Herbal Extracts in Treatment of Neurodegenerative Disorders. Front Bioeng Biotechnol 2020; 8:238. [PMID: 32318551 PMCID: PMC7154137 DOI: 10.3389/fbioe.2020.00238] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Nanotechnology is one of the methods that influenced human life in different ways and is a substantial approach that assists to overcome the multiple limitations of various diseases, particularly neurodegenerative disorders (NDs). Diverse nanostructures such as polymer nanoparticles, lipid nanoparticles, nanoliposomes, nano-micelles, and carbon nanotubes (CNTs); as well as different vehicle systems including poly lactic-co-glycolic acid, lactoferrin, and polybutylcyanoacrylate could significantly increase the effectiveness, reduce the side effects, enhance the stability, and improve the pharmacokinetics of many drugs. NDs belong to a group of annoying and debilitating diseases that involve millions of people worldwide. Previous studies revealed that several nanoformulations from a number of natural products such as curcumin (Cur), quercetin (QC), resveratrol (RSV), piperine (PIP), Ginkgo biloba, and Nigella sativa significantly improved the condition of patients diagnosed with NDs. Drug delivery to the central nervous system (CNS) has several limitations, in which the blood brain barrier (BBB) is the main drawback for treatment of NDs. This review discusses the effects of herbal-based nanoformulations, their advantages and disadvantages, to manage NDs. In summary, we conclude that herbal-based nano systems have promising proficiency in treatment of NDs, either alone or in combination with other drugs.
Collapse
Affiliation(s)
- Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Bayrami
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|