1
|
Renye JA, Mendez-Encinas MA, White AK, Miller AL, McAnulty MJ, Yadav MP, Hotchkiss AT, Guron GKP, Oest AM, Martinez-Robinson KG, Carvajal-Millan E. Antimicrobial activity of thermophilin 110 against the opportunistic pathogen Cutibacterium acnes. Biotechnol Lett 2023; 45:1365-1379. [PMID: 37606751 DOI: 10.1007/s10529-023-03419-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Thermophilin 110, a bacteriocin produced by Streptococcus thermophilus B59671, inhibited planktonic growth and biofilm formation of Cutibacterium acnes, a commensal skin bacterium associated with the inflammatory disease, acne vulgaris, and more invasive deep tissue infections. RESULTS Thermophilin 110 prevented planktonic growth of C. acnes at a concentration ≥ 160 AU mL-1; while concentrations ≥ 640 AU mL-1 resulted in a > 5 log reduction in viable planktonic cell counts and inhibited biofilm formation. Arabinoxylan (AX) and sodium alginate (SA) hydrogels were shown to encapsulate thermophilin 110, but as currently formulated, the encapsulated bacteriocin was unable to diffuse out of the gel and inhibit the growth of C. acnes. Hydrogels were also used to encapsulate S. thermophilus B59671, and inhibition zones were observed against C. acnes around intact SA gels, or S. thermophilus colonies that were released from AX gels. CONCLUSIONS Thermophilin 110 has potential as an antimicrobial for preventing C. acnes infections and further optimization of SA and AX gel formulations could allow them to serve as delivery systems for bacteriocins or bacteriocin-producing probiotics.
Collapse
Affiliation(s)
- John A Renye
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - Mayra A Mendez-Encinas
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, S/N, 83621, Caborca, SON, Mexico
| | - Andre K White
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Amanda L Miller
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Michael J McAnulty
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Madhav P Yadav
- Sustainable Biofuels and Co-Products Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Arland T Hotchkiss
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Giselle K P Guron
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Adam M Oest
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Karla G Martinez-Robinson
- Research Center for Food and Development, A.C. Carretera Gustavo E. Astiazaran Rosas 46, 83304, Hermosillo, SON, Mexico
| | - Elizabeth Carvajal-Millan
- Research Center for Food and Development, A.C. Carretera Gustavo E. Astiazaran Rosas 46, 83304, Hermosillo, SON, Mexico
| |
Collapse
|
2
|
He N, Pan Z, Li L, Zhang X, Yuan Y, Yang Y, Han S, Li B. Improving the Microstructural and Rheological Properties of Frozen Unfermented Wheat Dough with Laccase and Ferulic Acid. Foods 2023; 12:2772. [PMID: 37509864 PMCID: PMC10379111 DOI: 10.3390/foods12142772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The quality deterioration that is induced by freezing treatment limits the development of frozen dough technology for standardized and delayed baking. In this study, laccase (LAC) and ferulic acid (FA) were employed to improve the rheological properties and microstructure of frozen unfermented dough. The results showed that the dough with LAC + FA had a lower softening degree than the dough with FA alone. Correspondingly, LAC + FA incorporation enhanced the viscoelastic behavior of frozen unfermented dough with better stability. Furthermore, a more uniform and homogeneous gluten network was observed in the LAC + FA-supplemented dough after 21 d of storage. The structural stability of the frozen gluten sample increased after LAC + FA treatment, possibly owing to an increase in the oxidation degree of FA. Moreover, LAC + FA treatment promoted the oxidation of the sulfhydryl groups to some extent, resulting in more extensive cross-linking. LAC + FA treatment hindered the protein conformational changes typically induced by frozen storage compared with LAC alone. Overall, LAC + FA treatment has a synergistic effect on enhancing the viscoelastic behaviors of frozen unfermented dough and inhibiting the conformational variation in frozen gluten; thus, it shows promise for improving frozen dough.
Collapse
Affiliation(s)
- Ni He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Zhiqin Pan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Yi Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yipeng Yang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Yilmaz-Turan S, Lopez-Sanchez P, Jiménez-Quero A, Plivelic TS, Vilaplana F. Revealing the mechanisms of hydrogel formation by laccase crosslinking and regeneration of feruloylated arabinoxylan from wheat bran. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Arabinoxylan-Based Microcapsules Being Loaded with Bee Products as Bioactive Food Components Are Able to Modulate the Cell Migration and Inflammatory Response-In Vitro Study. Nutrients 2022; 14:nu14122529. [PMID: 35745258 PMCID: PMC9228011 DOI: 10.3390/nu14122529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the research was to use bioactive heteropolysaccharides isolated from rye bran to obtain innovative systems for the controlled release of bioactive compounds. The core of the obtained encapsulates was honey and royal jelly. It was shown for the first time that preparations effectively ameliorated inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, decreasing the secretion of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and nitric oxide (NO). The in vitro digestion process revealed that bee products’ encapsulates were stronger oxidative stress reducers and had sustained ability to reduction in inflammation state mediators. The lack of inhibitory effect on migration rate of human microvascular endothelial cells (HMEC-1) endothelial cells and mouse embryonic fibroblasts (NIH-3T3), both cell models involved in wound healing process, additionally identified these preparations as agents potentially used in the management of inflammatory response. In the process of a simulated digestion in vitro, the innovative microcapsules showed 85% higher biostability and two to ten times better bioavailability, compared to natural bee products.
Collapse
|
5
|
Han K, Gao J, Wei W, Zhu Q, Fersht V, Zhang M. Laccase‐induced wheat bran arabinoxylan hydrogels from different wheat cultivars: Structural, physicochemical, and rheological characteristics. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kexin Han
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin China
| | - Jianbiao Gao
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin China
| | - Wei Wei
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin China
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin China
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University (BTBU) Beijing China
| | - Viktor Fersht
- Center for Applied Medicine and Food Safety “Biomed” Lomonosov Moscow State University Moscow Russia
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin China
- China‐Russia Agricultural Processing Joint Laboratory Tianjin Agricultural University Tianjin China
| |
Collapse
|
6
|
Synergistic effects of laccase and pectin on the color changes and functional properties of meat analogs containing beet red pigment. Sci Rep 2022; 12:1168. [PMID: 35064181 PMCID: PMC8782913 DOI: 10.1038/s41598-022-05091-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023] Open
Abstract
The widening gap between current supply of meat and its future demand has increased the need to produce plant-based meat analogs. Despite ongoing technical developments, one of the unresolved challenges of plant-based meat analogs is to safely and effectively imitate the appearance of raw and cooked animal-based meat, especially the color. This study aimed to develop a more effective and safe browning system for beet red (BR) in plant-based meat analog patties using laccase (LC) and sugar beet pectin (SBP). First, we investigated the synergistic effects of SBP and LC on BR decolorization of meat analog patties. We discovered that the red tones of LC-treated patties containing BR and SBP were remarkably browned after grilling, compared to patties that did not contain SBP. Notably, this color change by LC + SBP was similar to that of beef patties. Additionally, the hardness of LC-treated meat analog patties containing BR was higher than those that did not contain BR. Interestingly, the presence of SBP and LC enhanced the browning reaction and functional properties of meat analogs containing BR. This is the first report on a browning system for meat analogs containing BR using enzymatic methods to the best of our knowledge.
Collapse
|
7
|
Robert B, Chenthamara D, Subramaniam S. Fabrication and biomedical applications of Arabinoxylan, Pectin, Chitosan, Soy protein, and Silk fibroin hydrogels via laccase - ferulic acid redox chemistry. Int J Biol Macromol 2021; 201:539-556. [PMID: 34973987 DOI: 10.1016/j.ijbiomac.2021.12.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
The unique physiochemical properties and the porous network architecture of hydrogel seek the attention to be explored in broad range of fields. In the last decade, numerous studies on the development of enzymatically cross-linked hydrogels have been elucidated. Implementing enzyme based cross-linking for fabrication of biomaterials over other crosslinking methods harbor various advantages, especially hydrogels designed using laccase exhibits mild reaction environment, high cross-linking efficiency and less toxicity. To our knowledge this is the first report reviewing the formulation of laccase mediated cross-linking for hydrogel preparation. Here, laccase catalyzed synthesis of hydrogel using polysaccharide viz. arabinoxylan, sugar beet pectin, galactomannan, chitosan etc. and proteins namely soy protein, gelatin, silk fibroin were discussed on highlighting their mechanical properties and its possible field of application. We have summarized the role of phenolic acids in laccase mediated crosslinking particularly ferulic acid which is a component of lignocellulose, serving cell rigidity via crosslinkage. The review also discusses on various biomedical applications such as controlled protein release, tissue engineering, and wound healing. It is anticipated that this review will give a detailed information on different laccase mediated reaction strategies that can be applied for the synthesis of various new biomaterials with tailor made properties.
Collapse
Affiliation(s)
- Becky Robert
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Dhrisya Chenthamara
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Sadhasivam Subramaniam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
8
|
He HJ, Qiao J, Liu Y, Guo Q, Ou X, Wang X. Isolation, Structural, Functional, and Bioactive Properties of Cereal Arabinoxylan─A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15437-15457. [PMID: 34842436 DOI: 10.1021/acs.jafc.1c04506] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arabinoxylans (AXs) are widely distributed in various cereal grains, such as wheat, corn, rye, barley, rice, and oat. The AX molecule contains a linear (1,4)-β-D-xylp backbone substituted by α-L-araf units and occasionally t-xylp and t-glcpA through α-(1,2) and/or α-(1,3) glycosidic linkages. Arabinoxylan shows diversified functional and bioactive properties, influenced by their molecular mass, branching degree, ferulic acid (FA) content, and the substitution position and chain length of the side chains. This Review summarizes the extraction methods for various cereal sources, compares their structural features and functional/bioactive properties, and highlights the established structure-function/bioactivity relationships, intending to explore the potential functions of AXs and their industrial applications.
Collapse
Affiliation(s)
- Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinli Qiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaochan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
9
|
Vuong TV, Master ER. Enzymatic upgrading of heteroxylans for added-value chemicals and polymers. Curr Opin Biotechnol 2021; 73:51-60. [PMID: 34311175 DOI: 10.1016/j.copbio.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Xylan is one of the most abundant, natural polysaccharides, and much recent interest focuses on upgrading heteroxylan to make use of its unique structures and chemistries. Significant progress has been made in the discovery and application of novel enzymes for debranching and modifying heteroxylans. Debranching enzymes include acetylxylan esterases, α-l-arabinofuranosidases and α-dglucuronidases that release side groups from the xylan backbone to recover both biochemicals and less substituted xylans for polymer applications in food packaging or drug delivery systems. Besides esterases and hydrolases, many oxidoreductases including carbohydrate oxidases, lytic polysaccharide monooxygenases, laccases and peroxidases have been also applied to alter different types of xylans for improved physical and chemical properties. This review will highlight the recent discovery and application of enzymes for upgrading xylans for use as added-value chemicals and in functional polymers.
Collapse
Affiliation(s)
- Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada; Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| |
Collapse
|
10
|
Molecular modification, structural characterization, and biological activity of xylans. Carbohydr Polym 2021; 269:118248. [PMID: 34294285 DOI: 10.1016/j.carbpol.2021.118248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
The differences in the source and structure of xylans make them have various biological activities. However, due to their inherent structural limitations, the various biological activities of xylans are far lower than those of commercial drugs. Currently, several types of molecular modification methods have been developed to address these limitations, and many derivatives with specific biological activity have been obtained. Further research on structural characteristics, structure-activity relationship and mechanism of action is of great significance for the development of xylan derivatives. Therefore, the major molecular modification methods of xylans are introduced in this paper, and the primary structure and conformation characteristics of xylans and their derivatives are summarized. In addition, the biological activity and structure-activity relationship of the modified xylans are also discussed.
Collapse
|
11
|
Li X, Li S, Liang X, McClements DJ, Liu X, Liu F. Applications of oxidases in modification of food molecules and colloidal systems: Laccase, peroxidase and tyrosinase. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Mu D, Li H, Li X, Zhu J, Qiao M, Wu X, Luo S, Yang P, Zhao Y, Liu F, Jiang S, Zheng Z. Enhancing laccase‐induced soybean protein isolates gel properties by microwave pretreatment. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongdong Mu
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
- Key Laboratory of Molecular Microbiology and Technology Ministry of Education College of Life Sciences Nankai University Tianjin China
| | - Haowen Li
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Xingjiang Li
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Jing Zhu
- State Key Laboratory of Tea Plant Biology and Utilization School of Science Anhui Agricultural University Hefei P.R. China
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology Ministry of Education College of Life Sciences Nankai University Tianjin China
| | - Xuefeng Wu
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Shuizhong Luo
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Peizhou Yang
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Yanyan Zhao
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Fengru Liu
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Shaotong Jiang
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui Province School of Food and Biological Engineering Hefei University of Technology Hefei China
| |
Collapse
|
13
|
Mendez-Encinas MA, Valencia-Rivera DE, Carvajal-Millan E, Astiazaran-Garcia H, Rascón-Chu A, Brown-Bojorquez F. Electrosprayed highly cross-linked arabinoxylan particles: effect of partly fermentation on the inhibition of Caco-2 cells proliferation. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2021006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
14
|
Abstract
The native extractable arabinoxylans (AX) from wheat bran were cross-linked by the commercial laccase C (LccC) and self-produced laccases from Funalia trogii (LccFtr) and Pleurotus pulmonarius (LccPpu) (0.04 U/µg FA, each). Dynamic oscillation measurements of the 6% AX gels demonstrated a storage modulus of 9.4 kPa for LccC, 9.8 kPa for LccFtr, and 10.0 kPa for LccPpu. A loss factor ≤ 0.6 was recorded in the range from 20 to 80 Hz for all three laccases, and remained constant for four weeks of storage, when LccFtr and LccPpu were used. Arabinoxylan gel characteristics, including high water holding capacity, swelling ratio in saliva, and heat resistance indicated a covalently cross-linked network. Neither the mediator compounds caffeic acid and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), nor citrus pectin, enhanced the elastic properties of the gels. Using laccases as an oxidant provided gels with a solid and stable texture, comparable in firmness to traditional gelatin gels. Thus, AX gels can be presented in the vegan, halal, and kosher food markets. They may also find use in pharmaceutical and other industrial applications.
Collapse
|
15
|
Mendez-Encinas MA, Carvajal-Millan E, Rascón-Chu A, Astiazarán-García H, Valencia-Rivera DE, Brown-Bojorquez F, Alday E, Velazquez C. Arabinoxylan-Based Particles: In Vitro Antioxidant Capacity and Cytotoxicity on a Human Colon Cell Line. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E349. [PMID: 31284672 PMCID: PMC6681090 DOI: 10.3390/medicina55070349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/04/2019] [Indexed: 01/03/2023]
Abstract
Background and objectives: Arabinoxylans (AX) can gel and exhibit antioxidant capacity. Previous studies have demonstrated the potential application of AX microspheres as colon-targeted drug carriers. However, the cytotoxicity of AX gels has not been investigated so far. Therefore, the aim of the present study was to prepare AX-based particles (AXM) by coaxial electrospraying method and to investigate their antioxidant potential and cytotoxicity on human colon cells. Materials and Methods: The gelation of AX was studied by monitoring the storage (G') and loss (G'') moduli. The morphology of AXM was evaluated using optical and scanning electron microscopy (SEM). The in vitro antioxidant activity of AX before and after gelation was measured using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. In addition, the effect of AX and AXM on the proliferation of human colon cells (CCD 841 CoN) was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: The final G' and G'' values for AX gels were 293 and 0.31 Pa, respectively. AXM presented spherical shape and rough surface with a three-dimensional and porous network. The swelling ratio and mesh size of AXM were 35 g water/g AX and 27 nm, respectively. Gelation decreased the antioxidant activity of AX by 61-64 %. AX and AXM did not affect proliferation or show any toxic effect on the normal human colon cell line CCD 841 CoN. Conclusion: The results indicate that AXM could be promising biocompatible materials with antioxidant activity.
Collapse
Affiliation(s)
- Mayra A Mendez-Encinas
- Biopolymers, Research Center for Food and Development (CIAD), Hermosillo, Sonora 83304, Mexico
| | | | - Agustín Rascón-Chu
- Biotechnology, Research Center for Food and Development (CIAD), Hermosillo, Sonora 83304, Mexico
| | | | - Dora E Valencia-Rivera
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Caborca, Sonora 83621, Mexico
| | | | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora 83000, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora 83000, Mexico
| |
Collapse
|