1
|
Ferrari M, van Leeuwen SS, de Vos P, Jurak E, Walvoort MTC. Impact of GOS and 2'-FL on the production and structural composition of membrane-associated exopolysaccharides by B. adolescentis and B. infantis. Carbohydr Polym 2025; 347:122660. [PMID: 39486922 DOI: 10.1016/j.carbpol.2024.122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 11/04/2024]
Abstract
Bifidobacteria, which are increasingly linked to health benefits to the host, produce structurally complex exopolysaccharides which are considered to be effector molecules responsible for health effects. It is currently not clear how the bacterial growth conditions, and especially the carbon source, affect the structural composition of the EPS. Here we present our investigations into the impact of the addition of 2'-fucosyllactose (2'-FL) and galactooligosaccharides (GOS), which are non-digestible carbohydrates added to infant formula, as the sole carbon source during the growth of B. adolescentis and B. infantis. Intriguingly, B. adolescentis produced EPS with larger molecular weights in the presence of GOS or a mixture of GOS/2'-FL. B. infantis showed increased growth levels in the presence of 2'-FL, and also produced an α-1,4-glucan polymer, whose amount was increased when grown on GOS. These findings highlight the species-specific effects of growth conditions on EPS structures.
Collapse
Affiliation(s)
- Michela Ferrari
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Sander S van Leeuwen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Paul de Vos
- Department of Pathology and Medical Biology, Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Edita Jurak
- Department of Bioproduct Engineering, Engineering and Technology Institute Groningen, University of Groningen, Groningen, the Netherlands.
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
2
|
Li X, Yang J, Shi S, Lan H, Zhao W, Hung W, He J, Wang R. The Genome of Bifidobacterium longum subsp. infantis YLGB-1496 Provides Insights into Its Carbohydrate Utilization and Genetic Stability. Genes (Basel) 2024; 15:466. [PMID: 38674400 PMCID: PMC11154571 DOI: 10.3390/genes15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Bifidobacterium longum subsp. infantis YLGB-1496 (YLGB-1496) is a probiotic strain isolated from human breast milk. The application of YLGB-1496 is influenced by carbohydrate utilization and genetic stability. This study used genome sequencing and morphology during continuous subculture to determine the carbohydrate utilization characteristics and genetic stability of YLGB-1496. The complete genome sequence of YLGB-1496 consists of 2,758,242 base pairs, 2442 coding sequences, and a GC content of 59.87%. A comparison of carbohydrate transport and metabolism genes of Bifidobacterium longum subsp. infantis (B. infantis) showed that YLGB-1496 was rich in glycosyl hydrolase 13, 20, 25, and 109 gene families. During continuous subculture, the growth characteristics and fermentation activity of the strain were highly stable. The bacterial cell surface and edges of the 1000th-generation strains were progressively smoother and well-defined, with no perforations or breaks in the cell wall. There were 20 SNP loci at the 1000th generation, fulfilling the requirement of belonging to the same strain. The presence of genes associated with cell adhesion and the absence of resistance genes supported the probiotic characteristics of the strain. The data obtained in this study provide insights into broad-spectrum carbohydrate utilization, genomic stability, and probiotic properties of YLGB-1496, which provide theoretical support to promote the use of YLGB-1496.
Collapse
Affiliation(s)
- Xiaoxia Li
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (X.L.); (J.Y.); (S.S.); (W.Z.)
| | - Jianjun Yang
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (X.L.); (J.Y.); (S.S.); (W.Z.)
| | - Shaoqi Shi
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (X.L.); (J.Y.); (S.S.); (W.Z.)
| | - Hanglian Lan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (H.L.); (W.H.); (J.H.)
| | - Wen Zhao
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (X.L.); (J.Y.); (S.S.); (W.Z.)
| | - Weilian Hung
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (H.L.); (W.H.); (J.H.)
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (H.L.); (W.H.); (J.H.)
| | - Ran Wang
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (X.L.); (J.Y.); (S.S.); (W.Z.)
| |
Collapse
|
3
|
Research progresses on enzymatic modification of starch with 4-α-glucanotransferase. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Christensen SJ, Madsen MS, Zinck SS, Hedberg C, Sørensen OB, Svensson B, Meyer AS. Enzymatic potato starch modification and structure-function analysis of six diverse GH77 4-alpha-glucanotransferases. Int J Biol Macromol 2022; 224:105-114. [DOI: 10.1016/j.ijbiomac.2022.10.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
5
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Morales-Contreras JA, Rodríguez-Pérez JE, Álvarez-González CA, Martínez-López MC, Juárez-Rojop IE, Ávila-Fernández Á. Potential applications of recombinant bifidobacterial proteins in the food industry, biomedicine, process innovation and glycobiology. Food Sci Biotechnol 2021; 30:1277-1291. [PMID: 34721924 DOI: 10.1007/s10068-021-00957-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Bifidobacterial proteins have been widely studied to elucidate the metabolic mechanisms of diet adaptation and survival of Bifidobacteria, among others. The use of heterologous expression systems to obtain proteins in sufficient quantities to be characterized has been essential in these studies. L. lactis and the same Bifidobacterium as expression systems highlight ways to corroborate some of the functions attributed to these proteins. The most studied proteins are enzymes related to carbohydrate metabolism, particularly glycosidases, due to their potential application in the synthesis of neoglycoconjugates, prebiotic neooligosaccharides, and active metabolites as well as their high specificity and efficiency in processing glycoconjugates. In this review, we classified the recombinant bifidobacterial proteins reported to date whose characterization has demonstrated their usefulness or their ability to produce a product of commercial interest for the food industry, biomedicine, process innovation and glycobiology. Future directions for their study are also discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00957-1.
Collapse
Affiliation(s)
- José A Morales-Contreras
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Jessica E Rodríguez-Pérez
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Carlos A Álvarez-González
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco Mexico
| | - Mirian C Martínez-López
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Isela E Juárez-Rojop
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico.,Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco Mexico
| | - Ángela Ávila-Fernández
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| |
Collapse
|
7
|
A putative novel starch-binding domain revealed by in silico analysis of the N-terminal domain in bacterial amylomaltases from the family GH77. 3 Biotech 2021; 11:229. [PMID: 33968573 DOI: 10.1007/s13205-021-02787-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
The family GH77 contains 4-α-glucanotransferase acting on α-1,4-glucans, known as amylomaltase in prokaryotes and disproportionating enzyme in plants. A group of bacterial GH77 members, represented by amylomaltases from Escherichia coli and Corynebacterium glutamicum, possesses an N-terminal extension that forms a distinct immunoglobulin-like fold domain, of which no function has been identified. Here, in silico analysis of 100 selected sequences of N-terminal domain homologues disclosed several well-conserved residues, among which Tyr108 (E. coli amylomaltase numbering) may be involved in α-glucan binding. These N-terminal domains, therefore, may represent a new type of starch-binding domain and define a new CBM family. This hypothesis is supported by docking of maltooligosaccharides to the N-terminal domain in amylomaltases, representing the four clusters of the phylogenetic tree. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02787-8.
Collapse
|
8
|
Kim JE, Tran PL, Ko JM, Kim SR, Kim JH, Park JT. Comparison of Catalyzing Properties of Bacterial 4-α-Glucanotransferases Focusing on Their Cyclizing Activity. J Microbiol Biotechnol 2021; 31:43-50. [PMID: 33046683 PMCID: PMC9705980 DOI: 10.4014/jmb.2009.09016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
A newly cloned 4-α-glucanotransferase (αGT) from Deinococcus geothermalis and two typical bacterial αGTs from Thermus scotoductus and Escherichia coli (MalQ) were investigated. Among 4 types of catalysis, the cyclization activity of αGTs that produces cycloamylose (CA), a valuable carbohydrate making inclusion complexes, was intensively studied. The new αGT, DgαGT, showed close protein sequence to the αGT from T. scotoductus (TsαGT). MalQ was clearly separated from the other two αGTs in the phylogenetic and the conserved regions analyses. The reaction velocities of disproportionation, cyclization, coupling, and hydrolysis of three αGTs were determined. Intriguingly, MalQ exhibited more than 100-fold lower cyclization activity than the others. To lesser extent, the disproportionation activity of MalQ was relatively low. DgαGT and TsαGT showed similar kinetics results, but TsαGT had nearly 10-fold lower hydrolysis activity than DgαGT. Due to the very low cyclizing activity of MalQ, DgαGT and TsαGT were selected for further analyses. When amylose was treated with DgαGT or TsαGT, CA with a broad DP range was generated immediately. The DP distribution of CA had a bimodal shape (DP 7 and 27 as peaks) for the both enzymes, but larger DPs of CA quickly decreased in the DgαGT. Cyclomaltopentaose, a rare cyclic sugar, was produced at early reaction stage and accumulated as the reactions went on in the both enzymes, but the increase was more profound in the TsαGT. Taken together, we clearly demonstrated the catalytic differences between αGT groups from thermophilic and pathogenic bacteria that and showed that αGTs play different roles depending on their lifestyle.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34734, Republic of Korea
| | - Phuong Lan Tran
- Department of Food Science and Technology, Chungnam National University, Daejeon 34734, Republic of Korea,Department of Food Technology, An Giang University, An Giang, Vietnam,Vietnam National University, Ho Chi Minh, Vietnam
| | - Jae-Min Ko
- Department of Food Science and Technology, Chungnam National University, Daejeon 34734, Republic of Korea
| | - Sa-Rang Kim
- Department of Food Nutrition, Chungnam National University, Daejeon 373, Republic of Korea
| | - Jae-Han Kim
- Department of Food Nutrition, Chungnam National University, Daejeon 373, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34734, Republic of Korea,Corresponding author Phone: +82-42-821-6728 Fax: +82-42-821-8785 E-mail:
| |
Collapse
|
9
|
Cloning and characterization of a novel amylopullulanase from Bacillus megaterium Y103 with transglycosylation activity. Biotechnol Lett 2020; 42:1719-1726. [DOI: 10.1007/s10529-020-02891-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/14/2020] [Indexed: 01/23/2023]
|