1
|
Zhang Z, Yu A, Hu W, Wu L, Yang D, Fu L, Wang Z, Kuang H, Wang M. A review on extraction, purification, structural characteristics, biological activities, applications of polysaccharides from Hovenia dulcis Thunb. (Guai Zao). Int J Biol Macromol 2024; 265:131097. [PMID: 38537845 DOI: 10.1016/j.ijbiomac.2024.131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 04/18/2024]
Abstract
Hovenia dulcis Thunb. (H. dulcis) is a widely distributed plant with a long history of cultivation and consumption. As a common plant, it has economic, edible and medicinal value. H. dulcis polysaccharides are one of their main bioactive ingredients and have many health benefits, such as anti-diabetes, antioxidation, anti-glycosylation, anti-fatigue, immune regulation activities and alcoholic liver disease protection activity. In this paper, the research progress of H. dulcis polysaccharides in extraction, purification, structural characteristics, biological activities, existing and potential applications were reviewed, which could provide new valuable insights for future studies.
Collapse
Affiliation(s)
- Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Lihong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Deqiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Lei Fu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
2
|
Naini AA, Mayanti T, Maharani R, Harneti D, Nurlelasari, Farabi K, Fajriah S, Hilmayanti E, Kabayama K, Shimoyama A, Manabe Y, Fukase K, Jungsuttiwong S, Prescott TAK, Supratman U. Paraxylines A-G: Highly oxygenated preurianin-type limonoids with immunomodulatory TLR4 and cytotoxic activities from the stem bark of Dysoxylum parasiticum. PHYTOCHEMISTRY 2024; 220:114009. [PMID: 38342289 DOI: 10.1016/j.phytochem.2024.114009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Seven previously undescribed preurianin-type limonoids, namely paraxylines A-G, and three known analogs were isolated from stem bark of Dysoxylum parasiticum. The structures, including absolute configurations, were established through spectroscopic analyses, quantum chemical calculations using the density functional theory method, as well as the DP4+ algorithm. Paraxylines A-G were identified as the first preurianin-type with full substitution at C, D-rings, leading to the highly oxygenated seco-limonoids skeleton. The secreted alkaline phosphate assay against an engineered human and murine TLR4 of HEK-Blue cells was performed to evaluate the immune regulating effects. Among them, paraxyline B was found to be a remarkable TLR4 agonist whereas two analogs (toonapubesins A and B) were found to antagonise lipopolysaccharide stimulation of the TLR4 pathway. Paraxylines A and C-E acted either as agonists or antagonists depending on the origin of the TLR4 receptor (human or mouse). The effect of these selected compounds on the expression of pro-inflammatory cytokines TNF-α, IL-1α, IL-1β, and IL-6 of the NF-κB signaling pathway were examined in macrophage cell lines, revealing dose-dependent effects. Additionally, paraxylines A, C, D, and G also presented modest cytotoxic activity against MCF-7 and HeLa cell lines with IC50 values ranging from 23.1 to 43.5 μM.
Collapse
Affiliation(s)
- Al Arofatus Naini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia; Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia; Study Centre of Natural Product Chemistry and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia; Study Centre of Natural Product Chemistry and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia; Study Centre of Natural Product Chemistry and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Nurlelasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia; Study Centre of Natural Product Chemistry and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia; Study Centre of Natural Product Chemistry and Synthesis, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Sofa Fajriah
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center Complex - BRIN, Cibinong, 16911, Bogor, West Java, Indonesia
| | - Erina Hilmayanti
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Sirriporn Jungsuttiwong
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | | | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia; Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Sumedang, West Java, Indonesia.
| |
Collapse
|
3
|
Shin HH, Kim JH, Jung YJ, Kwak MS, Sung MH, Imm JY. Postbiotic potential of Bacillus velezensis KMU01 cell-free supernatant for the alleviation of obesity in mice. Heliyon 2024; 10:e25263. [PMID: 38495172 PMCID: PMC10943329 DOI: 10.1016/j.heliyon.2024.e25263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 03/19/2024] Open
Abstract
Attention toward the preventive effects of postbiotics on metabolic diseases has increased because of greater stability and safety over probiotics. However, studies regarding the bioactive effects of postbiotics, especially from probiotic Bacillus strains, are relatively limited. The anti-obesity effects of the cell-free culture supernatant of Bacillus velezensis KMU01 (CFS-B.vele) were evaluated using high-fat-diet (HFD)-induced mice. HFD-induced mice (n = 8 per group) received equal volumes of (1) CFS-B.vele (114 mg/kg) in PBS, (2) Xenical in PBS, or (3) PBS alone by oral gavage daily for 13 weeks. The results demonstrated that CFS-B.vele changed the gut microbiota and showed anti-obesity effects in HFD-induced obese mice. The elevated Firmicutes/Bacteroidota ratio induced by HFD was decreased in the CFS-B.vele group compared to the other groups (p < 0.05). The CFS-B.vele intervention led to the enrichment of SCFA-producers, such as Roseburia and Eubacterium, in the cecum, suggesting their potential involvement in the amelioration of obesity. Due to these changes, the various obesity-related biomarkers (body weight, fat in tissue, white adipose tissue weight and size, serum LDL-cholesterol level, hepatic lipid accumulation, and adipogenesis/lipogenesis-related gene/protein expression) were improved. Our findings suggest that CFS-B.vele has potential as a novel anti-obesity agent through modulation of the gut microbiota.
Collapse
Affiliation(s)
- Hee Hyun Shin
- Department of Foods and Nutrition, Kookmin University, Seoul, 02707, South Korea
| | | | - Ye-Jin Jung
- KookminBio Corporation, Seoul, 02826, South Korea
| | - Mi-Sun Kwak
- KookminBio Corporation, Seoul, 02826, South Korea
| | | | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin University, Seoul, 02707, South Korea
| |
Collapse
|
4
|
Yan Z, Wang Y, Song Y, Ma Y, An Y, Wen R, Wang N, Huang Y, Wu X. Phenethylferulate as a natural inhibitor of inflammation in LPS-stimulated RAW 264.7 macrophages: focus on NF-κB, Akt and MAPK signaling pathways. BMC Complement Med Ther 2023; 23:398. [PMID: 37936108 PMCID: PMC10629144 DOI: 10.1186/s12906-023-04234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Notopterygii Rhizoma et Radix (NRR) is commonly used for the treatment of inflammation-linked diseases. Phenethylferulate (PF) is high content in NRR crude, but its anti-inflammatory effect remains unclear. Therefore, we aimed to investigate the anti-inflammatory properties of PF and its underlying molecular mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. METHODS The effect of PF on cell viability was measured by MTT assay. The anti-inflammatory properties of PF were studied by detecting the levels of inflammatory mediators and cytokines using enzyme-linked immunosorbent assay (ELISA). Furthermore, the anti-inflammatory mechanisms of PF were determined by Western blot analysis. RESULTS PF was not cytotoxic to RAW 264.7 macrophages at the concentrations of below 48 μM. ELISA showed that PF conspicuously inhibited overproduction of prostaglandin E2 (PGE2), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6). Western blot analysis showed that PF remarkably suppressed overproduction of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), the phosphorylation of inhibitor of NF-κB kinase α (IκB-α), protein kinase B (Akt), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinases (JNK) and p38, as well as the degradation and subsequent nuclear translocation of p65. CONCLUSIONS PF is a potent inhibitor of inflammation acting on nuclear factor kappa-B (NF-κB), Akt and mitogen-activated protein kinase (MAPK) signaling pathways in LPS-stimulated RAW 264.7 macrophages. This work provides evidence for the suitability of PF as a therapeutic candidate for the management of inflammatory-mediated immune disorders.
Collapse
Grants
- No. H2022206456, H2021206449, H2022206114, B2022321001 Natural Science Foundation of Hebei Province
- No. H2022206456, H2021206449, H2022206114, B2022321001 Natural Science Foundation of Hebei Province
- No. H2022206456, H2021206449, H2022206114, B2022321001 Natural Science Foundation of Hebei Province
- No. H2022206456, H2021206449, H2022206114, B2022321001 Natural Science Foundation of Hebei Province
- USIP2022173 Undergraduate Innovative Experiment Program of Hebei Medical University
- No. 82104195 National Natural Science Foundation of China
- No. 2022YFF1100301 National Key R&D Program of China
- No. 2022YFF1100301 National Key R&D Program of China
- National Key R&D Program of China
Collapse
Affiliation(s)
- Zhongjie Yan
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yuanyu Wang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yizhen Song
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yicong Ma
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yufan An
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Ran Wen
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Na Wang
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yun Huang
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Xiuwen Wu
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|